1
|
Elliott J, Koldej R, Khot A, Ritchie D. Graft-Versus-Host Disease Mouse Models: A Clinical-Translational Perspective. Methods Mol Biol 2025; 2907:1-56. [PMID: 40100591 DOI: 10.1007/978-1-0716-4430-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A variety of graft-versus-host disease (GVHD) models have been developed in mice for the purpose of allowing laboratory investigation of the pathobiology, prevention, and treatment of GVHD in humans. While such models are crucial in advancing our knowledge in this field, there are some key limitations that need to be considered when translating laboratory discoveries into the clinical context. This chapter will discuss current clinical practices in transplantation and GVHD and the relative strengths and weaknesses of mouse models that attempt to replicate these states.
Collapse
Affiliation(s)
- Jessica Elliott
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amit Khot
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Eldaly AS, Avila FR, Torres-Guzman RA, Maita K, Garcia JP, Serrano LP, Ho O, Forte AJ. Cell-Based Therapies Induce Tolerance of Vascularized Composite Allotransplants: A Systematic Review. J Surg Res 2024; 300:389-401. [PMID: 38851085 DOI: 10.1016/j.jss.2024.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissue types as a solution for devastating injuries. Despite the highly encouraging functional outcomes of VCA, the consequences of long-term immunosuppression remain the main obstacle in its application. In this review, we provide researchers and surgeons with a summary of the latest advances in the field of cell-based therapies for VCA tolerance. METHODS Four electronic databases were searched: PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature , and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as the basis of our organization. RESULTS Hematopoietic stem cells prolonged VCA survival. A combination of immature dendritic cells and tacrolimus was superior to tacrolimus alone. T cell Ig domain and mucin domain modified mature dendritic cells increased VCA tolerance. Bone marrow-derived mesenchymal stem cells prolonged survival of VCAs. A combination of adipose-derived mesenchymal stem cells, cytotoxic T-lymphocyte antigen 4 immunoglobulin, and antilymphocyte serum significantly improved VCA tolerance. Ex-vivo allotransplant perfusion with recipient's bone marrow-derived mesenchymal stem cells increased VCA survival. Recipient's adipose-derived mesenchymal stem cells and systemic immunosuppression prolonged VCA survival more than any of those agents alone. Additionally, a combination of peripheral blood mononuclear cells shortly incubated in mitomycin and cyclosporine significantly improved VCA survival. Finally, a combination of donor recipient chimeric cells, anti-αβ-T cell receptor (TCR), and cyclosporine significantly prolonged VCA tolerance. CONCLUSIONS Evidence from animal studies shows that cell-based therapies can prolong survival of VCAs. However, there remain many obstacles for these therapies, and they require rigorous clinical research given the rarity of the subjects and the complexity of the therapies. The major limitations of cell-based therapies include the need for conditioning with immunosuppressive drugs and radiation, causing significant toxicity. Safety concerns also persist as most research is on animal models. While completely replacing traditional immunosuppression with cell-based methods is unlikely soon, these therapies could reduce the need for high doses of immunosuppressants and improve VCA tolerance.
Collapse
Affiliation(s)
| | | | | | - Karla Maita
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - John P Garcia
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Olivia Ho
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
3
|
Alotaibi M, Alahmadi Z, Desai N, Brennan DC, Kant S. Twenty years in the making: tolerance in a living-related kidney transplant recipient. J Nephrol 2024; 37:1711-1713. [PMID: 38175522 DOI: 10.1007/s40620-023-01843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Kidney transplant recipients require lifelong immunosuppression to prevent graft rejection. However, immunosuppression is associated with adverse effects. A minority of kidney transplant recipients can be weaned off immunosuppression and maintain their graft function, a situation referred to as "functional or operational tolerance". We describe a case of a 70-year-old man who received a haploidentical hematopoietic cell transplant for lymphoma 22 years before receiving a kidney transplant from the same donor and was weaned off all immunosuppression by four months post-transplant. Tolerance was present, and there has been no graft rejection or graft vs. host disease. This case demonstrates successful long-term hematopoietic chimerism and functional tolerance after receiving a kidney transplant from the same donor.
Collapse
Affiliation(s)
- Manal Alotaibi
- Comprehensive Transplant Center and Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Umm Al-Qura University, College of Medicine, Makkah, Saudi Arabia.
| | - Ziad Alahmadi
- Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA
| | - Niraj Desai
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel C Brennan
- Comprehensive Transplant Center and Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sam Kant
- Comprehensive Transplant Center and Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Manoutcharian K, Gevorkian G. Are we getting closer to a successful neoantigen cancer vaccine? Mol Aspects Med 2024; 96:101254. [PMID: 38354548 DOI: 10.1016/j.mam.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Although significant advances in immunotherapy have revolutionized the treatment of many cancer types over the past decade, the field of vaccine therapy, an important component of cancer immunotherapy, despite decades-long intense efforts, is still transmitting signals of promises and awaiting strong data on efficacy to proceed with regulatory approval. The field of cancer vaccines faces standard challenges, such as tumor-induced immunosuppression, immune response in inhibitory tumor microenvironment (TME), intratumor heterogeneity (ITH), permanently evolving cancer mutational landscape leading to neoantigens, and less known obstacles: neoantigen gain/loss upon immunotherapy, the timing and speed of appearance of neoantigens and responding T cell clonotypes and possible involvement of immune interference/heterologous immunity, in the complex interplay between evolving tumor epitopes and the immune system. In this review, we discuss some key issues related to challenges hampering the development of cancer vaccines, along with the current approaches focusing on neoantigens. We summarize currently well-known ideas/rationales, thus revealing the need for alternative vaccine approaches. Such a discussion should stimulate vaccine researchers to apply out-of-box, unconventional thinking in search of new avenues to deal with critical, often yet unaddressed challenges on the road to a new generation of therapeutics and vaccines.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| |
Collapse
|
5
|
Pryce A, Van Eerden E, Cody M, Oakes J, DeSalvo A, Bannon S, Burlton C, Pawson R, Fingrut W, Barriga F, Ward J, Ingram C, Walsh M, El-Ghariani K, Ocheni S, Machin L, Allan D, Mengling T, Anthias C. Genetic Findings of Potential Donor Origin following Hematopoietic Cell Transplantation: Recommendations on Donor Disclosure and Genetic Testing from the World Marrow Donor Association. Transplant Cell Ther 2024; 30:143-154. [PMID: 38056629 DOI: 10.1016/j.jtct.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Following hematopoietic cell transplantation (HCT), recipients are subjected to extensive genetic testing to monitor the efficacy of the transplantation and identify relapsing malignant disease. This testing is increasingly including the use of large gene panels, which may lead to incidental identification of genetic and molecular information of potential donor origin. Deciphering whether variants are of donor origin, and if so, whether there are clinical implications for the donor can prove challenging. In response to queries from donor registries and transplant centers regarding best practices in managing donors when genetic mutations of potential donor origin are identified, the Medical Working Group of the World Marrow Donor Association established an expert group to review available evidence and develop a framework to aid decision making. These guidelines aim to provide recommendations on predonation consenting, postdonation testing of recipients, and informing and managing donors when findings of potential donor origin are identified in recipients post-transplantation. It is recognized that registries will have different access to resources and financing structures, and thus whenever possible, we have made suggestions on how recommendations can be adapted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jane Ward
- South African Bone Marrow Registry, Cape Town, South Africa
| | | | | | | | | | - Laura Machin
- Lancaster University, United Kingdom; Imperial College London, London, United Kingdom
| | | | | | - Chloe Anthias
- Anthony Nolan, London, United Kingdom; Royal Marsden Hospital, London, United Kingdom.
| |
Collapse
|
6
|
BEXEITOVA I, BURKITBAEV Z, ABDRAKHMANOVA S, TURGANBEKOVA A, TURGAMBAYEVA A. Quantitative analysis of hemopoetic chimerism after living-related homogeneous hemopoetic stem cells transplantation. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.20.04409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
8
|
Stenger W, Künkele A, Niemann M, Todorova K, Pruß A, Schulte JH, Eggert A, Oevermann L. Donor selection in a pediatric stem cell transplantation cohort using PIRCHE and HLA-DPB1 typing. Pediatr Blood Cancer 2020; 67:e28127. [PMID: 31850671 DOI: 10.1002/pbc.28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND New strategies to optimize donor selection for hematopoietic stem cell transplantation (HSCT) have mainly been evaluated in adults, but the disease spectrum requiring HSCT differs significantly in children and has consequences for the risk of complications, such as graft-versus-host disease (GvHD). PROCEDURES Here we evaluated whether HLA-DPB1 and Predicted Indirectly ReCognizable HLA-Epitope (PIRCHE) matching can improve donor selection and minimize risks specific for a pediatric cohort undergoing HSCT in Berlin between 2014 and 2016. RESULTS The percentage of HLA-DPB1-mismatched HSCT in the pediatric cohort was in line with the general distribution among matched unrelated donor HSCT. Nonpermissive HLA-DPB1 mismatches were not associated with a higher incidence of GvHD, but the incidence of relapse was higher in patients undergoing HSCT from HLA-DPB1-matched transplantations. High PIRCHE-I scores were associated with a significantly higher risk for developing GvHD in patients undergoing HSCT from nine of ten matched unrelated donors. This finding persisted after including HLA-DPB1 into the PIRCHE analysis. CONCLUSIONS Implementing PIRCHE typing in the donor selection process for HSCT in children could particularly benefit children with nonmalignant diseases and support further validation of PIRCHE-based donor selection in a larger number of children treated at different sites.
Collapse
Affiliation(s)
- Wiebke Stenger
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Kremena Todorova
- Center for Transfusion Medicine and Cell Therapies Berlin, Berlin, Germany
| | - Axel Pruß
- Center for Transfusion Medicine and Cell Therapies Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Oevermann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Servín-Blanco R, Chávaro-Ortiz RM, Zamora-Alvarado R, Martínez-Cortes F, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from major histocompatibility complex (MHC) class I molecules using variable epitope libraries. Immunol Lett 2018; 204:47-54. [PMID: 30339819 DOI: 10.1016/j.imlet.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Although various immune checkpoint inhibitors (ICIs), used for the treatment of advanced cancer, showed remarkably durable tumor regression in a subset of patients, there are important limitations in a large group of non-responders, and the generation of novel immunogens capable of inducing protective cellular immune responses is a priority in cancer immunotherapy field. During the last decades, several types of vaccine immunogens have been used in numerous preclinical studies and clinical trials. However, although immunity to tumor Ags can be elicited by most vaccines tested, their clinical efficacy remains modest. Recently, we have developed an innovative vaccine concept, called Variable Epitope Libraries (VELs), with the purpose to exploit the high antigenic variability of many important pathogens and tumor cells as starting points for the construction of a new class of vaccine immunogens capable of inducing the largest possible repertoire of both B and T cells. In the present study, we decided to generate VEL immunogens derived from both classical and non-classical major histocompatibility complex (MHC) class I molecules. The MHC molecules, responsible for antigen presentation and subsequent activation of T lymphocytes, undergo multiple modifications that directly affect their proper function, resulting in immune escape of tumor cells. Two large VELs derived from multi-epitope region of H2-Kd and Qa-2 sequences (46 and 34 amino acids long, respectively), along with their wild type counterparts have been generated as synthetic peptides and tested in an aggressive 4T1 mouse model of breast cancer. Significant inhibition of tumor growth and the reduction of metastatic lesions in the lungs of immunized mice were observed. This study demonstrated for the first time the successful application of VELs carrying combinatorial libraries of epitope variants derived from MHC class I molecules as novel vaccine immunogens.
Collapse
Affiliation(s)
- Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Rosa Mariana Chávaro-Ortiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Rubén Zamora-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Fernando Martínez-Cortes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico.
| |
Collapse
|