1
|
Sun L, Gao D, Chen J, Hou S, Li Y, Huang Y, Mammano F, Chen J, Yang J. Failure Of Hearing Acquisition in Mice With Reduced Expression of Connexin 26 Correlates With the Abnormal Phasing of Apoptosis Relative to Autophagy and Defective ATP-Dependent Ca2+ Signaling in Kölliker’s Organ. Front Cell Neurosci 2022; 16:816079. [PMID: 35308122 PMCID: PMC8928193 DOI: 10.3389/fncel.2022.816079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations in the GJB2 gene that encodes connexin 26 (Cx26) are the predominant cause of prelingual hereditary deafness, and the most frequently encountered variants cause complete loss of protein function. To investigate how Cx26 deficiency induces deafness, we examined the levels of apoptosis and autophagy in Gjb2loxP/loxP; ROSA26CreER mice injected with tamoxifen on the day of birth. After weaning, these mice exhibited severe hearing impairment and reduced Cx26 expression in the cochlear duct. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells were observed in apical, middle, and basal turns of Kölliker’s organ at postnatal (P) day 1 (P1), associated with increased expression levels of cleaved caspase 3, but decreased levels of autophagy-related proteins LC3-II, P62, and Beclin1. In Kölliker’s organ cells with decreased Cx26 expression, we also found significantly reduced levels of intracellular ATP and hampered Ca2+ responses evoked by extracellular ATP application. These results offer novel insight into the mechanisms that prevent hearing acquisition in mouse models of non-syndromic hearing impairment due to Cx26 loss of function.
Collapse
Affiliation(s)
- Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuyu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Biochemistry and Cell Biology, Italian National Research Council, Monterotondo, Italy
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| |
Collapse
|
2
|
Miranda JG, Schleicher WE, Wells KL, Ramirez DG, Landgrave SP, Benninger RKP. Dynamic changes in β-cell [Ca 2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol Metab 2022; 57:101430. [PMID: 34979329 PMCID: PMC8804269 DOI: 10.1016/j.molmet.2021.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diabetes occurs because of insufficient insulin secretion due to β-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger β-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the β-cell. However, the link between the regulation of β-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.
Collapse
Affiliation(s)
- Jose G Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Samantha P Landgrave
- Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA; Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|