1
|
Ko J, Yoo C, Xing D, Chun J, Gonzalez DE, Dickerson BL, Leonard M, Jenkins V, van der Merwe M, Slupsky CM, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Human Milk Oligosaccharide 2'-Fucosyllactose Ingestion on Weight Loss and Markers of Health. Nutrients 2024; 16:3387. [PMID: 39408354 PMCID: PMC11478354 DOI: 10.3390/nu16193387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2'-FL) is an oligosaccharide contained in human milk and possesses prebiotic and anti-inflammatory effects, which may alleviate skeletal muscle atrophy under caloric restriction. This study evaluated the impacts of 12 weeks of 2'-FL supplementation in conjunction with exercise (10,000 steps/day, 5 days/week) and energy-reduced (-300 kcals/day) dietary interventions on changes in body composition and health-related biomarkers. METHODS A total of 41 overweight and sedentary female and male participants (38.0 ± 13 years, 90.1 ± 15 kg, 31.6 ± 6.6 kg/m2, 36.9 ± 7% fat) took part in a randomized, double-blind, and placebo-controlled study. The participants underwent baseline assessments and were then assigned to ingest 3 g/day of a placebo (PLA) or Momstamin 2'-F while initiating the exercise and weight-loss program. Follow-up tests were performed after 6 and 12 weeks. Data were analyzed using general linear model statistics with repeated measures and mean changes from baseline values with 95% confidence intervals (CIs). RESULTS No group × time × sex interaction effects were observed, so group × time effects are reported. Participants in both groups saw comparable reductions in weight. However, those with 2'-FL demonstrated a significantly greater reduction in the percentage of body fat and less loss of the fat-free mass. Additionally, there was evidence that 2'-FL supplementation promoted more favorable changes in resting fat oxidation, peak aerobic capacity, IL-4, and platelet aggregation, with some minimal effects on the fermentation of short-chain fatty acids and monosaccharides in fecal samples. Moreover, participants' perceptions regarding some aspects of the functional capacity and ratings of the quality of life were improved, and the supplementation protocol was well tolerated, although a small, but significant, decrease in BMC was observed. CONCLUSIONS The results support contentions that dietary supplementation of 2'-FL (3 g/d) can promote fat loss and improve exercise- and diet-related markers of health and fitness in overweight sedentary individuals initiating an exercise and weight-loss program. Further research is needed to explore the potential health benefits of 2'-FL supplementation in both healthy and elderly individuals (Registered clinical trial #NCT06547801).
Collapse
Affiliation(s)
- Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Jisun Chun
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Broderick L. Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Marie van der Merwe
- Center for Nutraceutical and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Carolyn M. Slupsky
- Departments of Nutrition and Food Science and Technology, University of California Davis, Davis, CA 95616, USA;
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (J.K.); (C.Y.); (D.X.); (J.C.); (D.E.G.); (B.L.D.); (M.L.); (V.J.); (R.S.); (C.J.R.)
| |
Collapse
|
2
|
Hausenblas HA, Lynch TA, Befus SM, Braverman TL, Hooper SL. Efficacy of Dichrostachys Glomerata Supplementation on Overweight and Mildly Obese Adult's Weight, Mood, and Health-Related Quality of Life: A Randomized Double-Blind Placebo-Controlled Trial. J Diet Suppl 2024; 21:825-840. [PMID: 39313865 DOI: 10.1080/19390211.2024.2406449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Despite their widespread use, research is needed to evaluate the weight loss and related health/wellness outcomes of herbal plants. Preliminary research found that the fruit of Dichrostachys glomerata is safe and has potential weight loss effects. This study aimed to examine the effect of a standardized powder of D. glomerata fruit pods (DYG-400®) on weight, food cravings, mood, and health-related quality of life of overweight and mildly obese adults. In this CONSORT-compliant double-blind placebo-controlled trial, 56 adults (Mean [M] age = 44.50, M [body mass index] BMI = 31.66) were randomized to either the D. glomerata Group (DG; 300 mg/d) or Placebo Group (PG; rice protein, 300 mg/d) for 60 days. Participants weight was assessed along with self-report assessments of the Food Cravings Questionnaire, CDC Health-related Quality of Life, Perceived Stress Scale, Trait Anxiety Inventory, and Profile of Mood States at Baseline, Day 30, and Day 60. The data were collected from March 2023 to June 2023 and stored electronically, and analyzed using general linear models with repeated measures. DG lost more weight at Day 60 compared to PG, p = .05 (4.11 vs. 2.19 lbs). DG had reduced food cravings from Baseline to Day 30 and Day 60 compared to PG, p < .001. Perceived stress, p < .001, and mood, p = .017, improved from Baseline to Day 60 for DG compared to PG. Anxiety decreased from Baseline to Day 60 for DG and from Baseline to Day 30 for PG, p < .001. Health-related Quality of Life improved for DG compared to PG, p < .001. D. glomerata (DYG-400®) may be an effective herbal intervention to promote weight loss and health. Extended clinical trials across diverse populations and settings are needed. Clinical trial registry number and website: ISRCTN10099861, https://doi.org/10.1186/ISRCTN10099861.
Collapse
|
3
|
Yoo C, Maury J, Gonzalez DE, Ko J, Xing D, Jenkins V, Dickerson B, Leonard M, Estes L, Johnson S, Chun J, Broeckel J, Pradelles R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Supplementation with a Microalgae Extract from Phaeodactylum tricornutum Containing Fucoxanthin on Cognition and Markers of Health in Older Individuals with Perceptions of Cognitive Decline. Nutrients 2024; 16:2999. [PMID: 39275314 PMCID: PMC11397347 DOI: 10.3390/nu16172999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Phaeodactylum tricornutum (PT) is a microalgae extract that contains fucoxanthin and has been shown to enhance cognitive function in younger populations. The present study assessed if PT supplementation affects cognition in healthy, young-old, physically active adults with self-perceptions of cognitive and memory decline. METHODS Forty-three males and females (64.3 ± 6.0 years, 79.8 ± 16.0 kg, 27.0 ± 4.0 kg/m2) with perceptions of cognitive and memory decline completed the double-blind, randomized, parallel-arm, placebo-controlled intervention clinical trial. Participants were counterbalanced by sex and BMI and randomly allocated to their respective 12-week supplementation interventions, which were either the placebo (PL) or 1100 mg/day of PT containing 8.8 mg of fucoxanthin (FX). Fasting blood samples were collected, and cognitive assessments were performed during the testing session at 0, 4, and 12 weeks of intervention. The data were analyzed by multivariate and univariate general linear model (GLM) analyses with repeated measures, pairwise comparisons, and mean changes from baseline analysis with 95% confidence intervals (CIs) to assess the clinical significance of the findings. RESULTS FX supplementation significantly affected (p < 0.05) or exhibited tendencies toward significance (p > 0.05 to p < 0.10 with effect sizes ranging from medium to large) for word recall, picture recognition reaction time, Stroop color-word test, choice reaction time, and digit vigilance test variables. Additionally, FX supplementation promoted a more consistent clinical improvement from baseline values when examining mean changes with 95% CIs, although most differences were seen over time rather than between groups. CONCLUSIONS The results demonstrate some evidence that FX supplementation can improve working and secondary memory, vigilance, attention, accuracy, and executive function. There was also evidence that FX promoted more positive effects on insulin sensitivity and perceptions about sleep quality with no negative effects on clinical blood panels or perceived side effects. Additional research should investigate how FX may affect cognition in individuals perceiving memory and cognitive decline. Registered clinical trial #NCT05759910.
Collapse
Affiliation(s)
- Choongsung Yoo
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jonathan Maury
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Landry Estes
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jisun Chun
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jacob Broeckel
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Rémi Pradelles
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| |
Collapse
|
4
|
Leonard M, Dickerson B, Estes L, Gonzalez DE, Jenkins V, Johnson S, Xing D, Yoo C, Ko J, Purpura M, Jäger R, Faries M, Kephart W, Sowinski R, Rasmussen CJ, Kreider RB. Acute and Repeated Ashwagandha Supplementation Improves Markers of Cognitive Function and Mood. Nutrients 2024; 16:1813. [PMID: 38931168 PMCID: PMC11207027 DOI: 10.3390/nu16121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ashwagandha has been reported to reduce stress and attenuate cognitive decline associated with inflammation and neurodegeneration in clinical populations. However, the effects as a potential nootropic nutrient in younger populations are unclear. This study examined the effects of liposomal ashwagandha supplementation on cognitive function, mood, and markers of health and safety in healthy young men and women. METHODS 59 men and women (22.7 ± 7 yrs., 74.9 ± 16 kg, 26.2 ± 5 BMI) fasted for 12 h, donated a fasting blood sample, and were administered the COMPASS cognitive function test battery (Word Recall, Word recognition, Choice Reaction Time Task, Picture Recognition, Digit Vigilance Task, Corsi Block test, Stroop test) and profile of mood states (POMS). In a randomized and double-blind manner, participants were administered 225 mg of a placebo (Gum Arabic) or ashwagandha (Withania somnifera) root and leaf extract coated with a liposomal covering. After 60-min, participants repeated cognitive assessments. Participants continued supplementation (225 mg/d) for 30 days and then returned to the lab to repeat the experiment. Data were analyzed using a general linear model (GLM) univariate analysis with repeated measures and pairwise comparisons of mean changes from baseline with 95% confidence intervals (CI). RESULTS Ashwagandha supplementation improved acute and/or 30-day measures of Word Recall (correct and recalled attempts), Choice Reaction Time (targets identified), Picture Recognition ("yes" correct responses, correct and overall reaction time), Digit Vigilance (correct reaction time), Stroop Color-Word (congruent words identified, reaction time), and POMS (tension and fatigue) from baseline more consistently with several differences observed between groups. CONCLUSION Results support contentions that ashwagandha supplementation (225 mg) may improve some measures of memory, attention, vigilance, attention, and executive function while decreasing perceptions of tension and fatigue in younger healthy individuals. Retrospectively registered clinical trial ISRCTN58680760.
Collapse
Affiliation(s)
- Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Landry Estes
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Martin Purpura
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin—Whitewater, Whitewater, WI 53190, USA;
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| |
Collapse
|
5
|
Dickerson B, Maury J, Jenkins V, Nottingham K, Xing D, Gonzalez DE, Leonard M, Kendra J, Ko J, Yoo C, Johnson S, Pradelles R, Purpura M, Jäger R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Supplementation with Microalgae Extract from Phaeodactylum tricornutum (Mi136) to Support Benefits from a Weight Management Intervention in Overweight Women. Nutrients 2024; 16:990. [PMID: 38613023 PMCID: PMC11013338 DOI: 10.3390/nu16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Microalgae like Phaeodactylum tricornutum (PT) contain the carotenoid, fucoxanthin, which has been purported to promote fat loss, lower blood lipids, and improve glucose management. This study examined whether dietary supplementation with microalgae extracts from PT containing 4.4 mg/d of fucoxanthin affects changes in body composition or health markers in overweight women during an exercise and diet intervention. MATERIALS AND METHODS A total of 37 females (28.6 ± 7.9 years, 80.2 ± 14.9 kg, 29.6 ± 3.8 kg/m², 41.4 ± 4.2% fat) fasted for 12 h, donated a fasting blood sample, completed health and mood state inventories, and undertook body composition, health, and exercise assessments. In a counterbalanced, randomized, and double-blind manner, participants ingested a placebo (PL), or microalgae extract of Phaeodactylum tricornutum standardized to 4.4 mg of fucoxanthin (FX) for 12 weeks while participating in a supervised exercise program that included resistance-training and walking (3 days/week) with encouragement to accumulate 10,000 steps/day on remaining days of the week. The diet intervention involved reducing energy intake by about -300 kcal/d (i.e., ≈1400-1600 kcals/d, 55% carbohydrate, 30% fat, 15% protein) to promote a -500 kcal/d energy deficit with exercise. Follow-up testing was performed at 6 and 12 weeks. A general linear model (GLM) with repeated measures statistical analysis was used to analyze group responses and changes from baseline with 95% confidence intervals. RESULTS Dietary supplementation with microalgae extract from PT containing fucoxanthin for 12 weeks did not promote additional weight loss or fat loss in overweight but otherwise healthy females initiating an exercise and diet intervention designed to promote modest weight loss. However, fucoxanthin supplementation preserved bone mass, increased bone density, and saw greater improvements in walking steps/day, resting heart rate, aerobic capacity, blood lipid profiles, adherence to diet goals, functional activity tolerance, and measures of quality of life. Consequently, there appears to be some benefit to supplementing microalgae extract from PT containing fucoxanthin during a diet and exercise program. Registered clinical trial #NCT04761406.
Collapse
Affiliation(s)
- Broderick Dickerson
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Jonathan Maury
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Kay Nottingham
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Jacob Kendra
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Rémi Pradelles
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Martin Purpura
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| |
Collapse
|
6
|
Siedler MR, Rodriguez C, White SJ, Tinoco E, DeHaven B, Brojanac A, LaValle C, Rasco J, Taylor LW, Tinsley GM. Chronic Thermogenic Dietary Supplement Consumption: Effects on Body Composition, Anthropometrics, and Metabolism. Nutrients 2023; 15:4806. [PMID: 38004200 PMCID: PMC10674526 DOI: 10.3390/nu15224806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multi-ingredient thermogenic supplements can acutely increase resting energy expenditure (REE) and subjective energy. However, less is understood about the effects of chronic consumption on body composition, metabolism, and subjective variables such as mood, sleep quality, and eating behaviors. Fifty-two healthy, exercise-trained participants (50% female; mean ± SD age: 23.5 ± 3.0 years; body fat percentage: 27.3 ± 8.0%) were randomized 2:2:1 to take a whey protein supplement alone (PRO; n = 20), in combination with a thermogenic supplement (PRO + FB; n = 19), or no supplement at all (CON; n = 13) for four weeks. Body composition, anthropometric, metabolic, hemodynamic, and subjective outcomes were collected before and after the intervention. Greater changes in REE occurred in PRO + FB as compared to CON (111.2 kcal/d, 95% CI 2.4 to 219.9 kcal/d, p = 0.04), without significant differences between PRO and CON (42.7 kcal/d, 95% CI -65.0 to 150.3 kcal/d, p = 0.61) or between PRO + FB and PRO (68.5 kcal/d, 95% CI -28.3, 165.3, p = 0.21). No changes in hemodynamic outcomes (blood pressure and heart rate) were observed. In exercising adults, four weeks of supplementation with protein and a multi-ingredient thermogenic product maintained fasted REE as compared to no supplementation, for which a decrease in REE was observed, without differential effects on body composition, anthropometrics, or subjective variables.
Collapse
Affiliation(s)
- Madelin R. Siedler
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Christian Rodriguez
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Sarah J. White
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Ethan Tinoco
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Brielle DeHaven
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Alexandra Brojanac
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Christian LaValle
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Jaylynn Rasco
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| | - Lem W. Taylor
- Human Performance Laboratory, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA;
| | - Grant M. Tinsley
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.S.); (C.R.); (S.J.W.); (E.T.); (B.D.); (A.B.); (C.L.); (J.R.)
| |
Collapse
|
7
|
Djiazet S, Blandine Mezajoug Kenfack L, Serge Ngangoum E, Nzali Ghomdim H, Tchiégang C. Indigenous spices consumed in the food habits of the populations living in some countries of Sub-Saharan Africa: Utilisation value, nutritional and health potentials for the development of functional foods and drugs: A review. Food Res Int 2022; 157:111280. [DOI: 10.1016/j.foodres.2022.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
|
8
|
Effects of Inositol-Enhanced Bonded Arginine Silicate Ingestion on Cognitive and Executive Function in Gamers. Nutrients 2021; 13:nu13113758. [PMID: 34836014 PMCID: PMC8618773 DOI: 10.3390/nu13113758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Inositol stabilized arginine silicate (ASI) ingestion has been reported to increase nitric oxide levels while inositol (I) has been reported to enhance neurotransmission. The current study examined whether acute ASI + I (Inositol-enhanced bonded arginine silicate) ingestion affects cognitive function in e-sport gamers. In a double blind, randomized, placebo controlled, and crossover trial, 26 healthy male (n = 18) and female (n = 8) experienced gamers (23 ± 5 years, 171 ± 11 cm, 71.1 ± 14 kg, 20.7 ± 3.5 kg/m2) were randomly assigned to consume 1600 mg of ASI + I (nooLVL®, Nutrition 21) or 1600 mg of a maltodextrin placebo (PLA). Prior to testing, participants recorded their diet, refrained from consuming atypical amounts of stimulants and foods high in arginine and nitrates, and fasted for 8 h. During testing sessions, participants completed stimulant sensitivity questionnaires and performed cognitive function tests (i.e., Berg-Wisconsin Card Sorting task test, Go/No-Go test, Sternberg Task Test, Psychomotor Vigilance Task Test, Cambridge Brain Sciences Reasoning and Concentration test) and a light reaction test. Participants then ingested treatments in a randomized manner. Fifteen minutes following ingestion, participants repeated tests (Pre-Game). Participants then played their favorite video game for 1-h and repeated the battery of tests (Post-Game). Participants observed a 7–14-day washout period and then replicated the study with the alternative treatment. Data were analyzed by General Linear Model (GLM) univariate analyses with repeated measures using weight as a covariate, paired t-tests (not adjusted to weight), and mean changes from baseline with 95% Confidence Intervals (CI). Pairwise comparison revealed that there was a significant improvement in Sternberg Mean Present Reaction Time (ASI + I vs. PLA; p < 0.05). In Post-Game assessments, 4-letter Absent Reaction Time (p < 0.05), 6-letter Present Reaction Time (p < 0.01), 6-letter Absent Reaction Time (p < 0.01), Mean Present Reaction Time (p < 0.02), and Mean Absent Reaction Time (p < 0.03) were improved with ASI + I vs. PLA. There was a non-significant trend in Pre-Game Sternberg 4-letter Present Reaction time in ASI + I vs. PLA (p < 0.07). ASI + I ingestion better maintained changes in Go/No-Go Mean Accuracy and Reaction Time, Psychomotor Vigilance Task Reaction Time, and Cambridge Post-Game Visio-spatial Processing and Planning. Results provide evidence that ASI + I ingestion prior to playing video games may enhance some measures of short-term and working memory, reaction time, reasoning, and concentration in experienced gamers.
Collapse
|