1
|
Galluzzo FG, Cammilleri G, Pulvirenti A, Mannino E, Pantano L, Calabrese V, Buscemi MD, Messina EMD, Alfano C, Macaluso A, Ferrantelli V. Determination of Mycotoxins in Plant-Based Meat Alternatives (PBMAs) and Ingredients after Microwave Cooking. Foods 2024; 13:339. [PMID: 38275706 PMCID: PMC10815609 DOI: 10.3390/foods13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, we investigate the role of microwave cooking in reducing mycotoxin contamination in plant-based food matrices, with a focus on veggie burgers (purchased and home-made) and their ingredients (soybean, potatoes, zucchini, carrots). Two different conditions were studied (Max-Min) that were 800 W for 60 s and 800 W for 90 s, respectively. The degradation patterns of aflatoxins (AFB1, AFB2, AFG1, AFG2), fumonisins (FB1, FB2, FB3), trichothecenes (T2, HT2, ZEA), and ochratoxin A (OTA) were studied. The extraction procedures were conducted with the QuEChERS extraction, and the analyses were conducted with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Principal component analysis (PCA) showed that degradation under microwave cooking varies considerably across different food matrices and cooking conditions. This study provides valuable insights into the degradation of mycotoxins during microwave cooking and underscores the need for more research in this area to ensure food safety.
Collapse
Affiliation(s)
- Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
- Dipartimento Scienze della Vita, Università Degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Andrea Pulvirenti
- Dipartimento Scienze della Vita, Università Degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Erika Mannino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Vittorio Calabrese
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli studi di Catania, 95123 Catania, Italy;
| | - Maria Drussilla Buscemi
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Elisa Maria Domenica Messina
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Calogero Alfano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| |
Collapse
|
2
|
Lee HJ, Kim HD, Ryu D. Practical Strategies to Reduce Ochratoxin A in Foods. Toxins (Basel) 2024; 16:58. [PMID: 38276534 PMCID: PMC10819544 DOI: 10.3390/toxins16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Ochratoxin A (OTA), a potent nephrotoxin, is one of the most deleterious mycotoxins, with its prevalence in agricultural crops and their processed foods around the world. OTA is a major concern to food safety, as OTA exposure through dietary intake may lead to a significant level of accumulation in the body as a result of its long half-life (about 35 days). Its potent renal toxicity and high risk of exposure as well as the difficulty in controlling environmental factors OTA production has prompted the need for timely information on practical strategies for the food industry to effectively manage OTA contamination during food processing. The effects of various food processes, including both nonthermal and thermal methods, on the reduction in OTA were summarized in this review, with emphasis on the toxicity of residual OTA as well as its known and unknown degradation products. Since complete removal of OTA from foodstuffs is not feasible, additional strategies that may facilitate the reduction in OTA in food, such as adding baking soda and sugars, was also discussed, so that the industry may understand and apply practical measures to ensure the safety of its products destined for human consumption.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Hae Dun Kim
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Dojin Ryu
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
3
|
Chen J, Chen Y, Zhu Q, Wan J. Ochratoxin A contamination and related high-yield toxin strains in Guizhou dried red chilies. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Pickova D, Toman J, Mikyskova P, Ostry V, Malir F. Investigation of ochratoxin a in blood sausages in the Czech Republic: Comparison with data over Europe. Food Res Int 2022; 157:111473. [PMID: 35761704 DOI: 10.1016/j.foodres.2022.111473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022]
Abstract
Blood sausages consisting of groats, pork, porcine offal, fat, blood, and spices are very popular in the Czech Republic. All these ingredients are potential sources of dietary exposure to ochratoxin A (OTA). OTA has a strong affinity to serum proteins in porcine blood. Thus, the contamination of blood sausages with OTA can be expected. This study aims to evaluate OTA in 200 samples of porcine blood sausages purchased at the Czech market during 2020-2021. The analytical method high-performance liquid chromatography coupled with fluorescence detection with pre-treatment using immunoaffinity columns was employed to determine OTA. The limit of detection was 0.03 ng/g and the limit of quantification 0.10 ng/g. Recovery was 71.6 %. All samples were positive at contents ranging from 0.15 to 5.68 ng/g with a mean of 1.47 ng/g, and a median of 1.26 ng/g. A total of 66% of these samples contained OTA content exceeding the maximum limit of 1 ng/g set in Italy. This study demonstrates that the Czech population is exposed to OTA from blood sausages. The proposed preliminary action limit for OTA in blood sausages should be set at 1 ng/g. No regulatory limits for OTA in blood sausages have been established yet in the European Union legislation. To protect human health, further monitoring of OTA in these products is necessary.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic.
| | - Petra Mikyskova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic
| | - Vladimir Ostry
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By increasing the resistance of seeds against abiotic and biotic stress, the possibility of cereal mold contamination and hence the occurrence of secondary mold metabolites mycotoxins decreases. The use of biological methods of seed treatment represents a complementary strategy, which can be implemented as an environmental-friendlier approach to increase the agricultural sustainability. Whereas the use of resistant cultivars helps to reduce mold growth and mycotoxin contamination at the very beginning of the production chain, biological detoxification of cereals provides additional weapons against fungal pathogens in the later stage. Most efficient techniques can be selected and combined on an industrial scale to reduce losses and boost crop yields and agriculture sustainability, increasing at the same time food and feed safety. This paper strives to emphasize the possibility of implementation of biocontrol methods in the production of resistant seeds and the prevention and reduction in cereal mycotoxin contamination.
Collapse
|
6
|
Carbon H, Lee H. Varied reduction of ochratoxin A in brown and white rice during roasting. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) is a possible human carcinogen commonly found in various agricultural commodities worldwide. While this potent nephrotoxin tends to survive common food processes and contaminate food products, certain process with higher temperature treatments may reduce OTA contents. Roasting has been suggested as a possible method to reduce OTA in coffee beans with up to 90% reduction, which may be applied to other food commodities. In this study, the possible influence of fibres on the reduction of OTA was investigated with brown and white rice with 2.2 and 6.7% of total dietary fibre content, respectively, roasting at two different temperatures (160 and 200 °C) for up to 30 min. The results showed that the rate and extent of OTA reduction were dependent on time, temperature, and rice type; greater than 60% of OTA reduction were achieved at 200 °C for 30 min for white rice and 37% for brown rice at the same conditions. No significant differences in reduction were observed between the samples roasted at 160 °C for 30 min and 200 °C for 15 min for both the white and brown rice, while white rice roasted at 160 °C for 15 min during roasting may be affected by the presence of fibre and/or fat in the cereal grains.
Collapse
Affiliation(s)
- H.N. Carbon
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| | - H.J. Lee
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| |
Collapse
|
7
|
Vlachou M, Pexara A, Solomakos N, Govaris A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins (Basel) 2022; 14:67. [PMID: 35202095 PMCID: PMC8876995 DOI: 10.3390/toxins14020067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is produced after the growth of several Aspergillus and Penicillium spp. in feeds or foods. OTA has been proved to possess nephrotoxic, hepatotoxic, teratogenic, neurotoxic, genotoxic, carcinogenic and immunotoxic effects in animals and humans. OTA has been classified as possibly carcinogenic to humans (Group 2B) by the IARC in 2016. OTA can be mainly found in animals as a result of indirect transmission from naturally contaminated feed. OTA found in feed can also contaminate pigs and produced pork products. Additionally, the presence of OTA in pork meat products could be derived from the direct growth of OTA-producing fungi or the addition of contaminated materials such as contaminated spices. Studies accomplished in various countries have revealed that pork meat and pork meat products are important sources of chronic dietary exposure to OTA in humans. Various levels of OTA have been found in pork meat from slaughtered pigs in many countries, while OTA levels were particularly high in the blood serum and kidneys of pigs. Pork products made from pig blood or organs such as the kidney or liver have been often found to becontaminated with OTA. The European Union (EU) has established maximum levels (ML) for OTA in a variety of foods since 2006, but not for meat or pork products. However, the establishement of an ML for OTA in pork meat and meat by-products is necessary to protect human health.
Collapse
Affiliation(s)
| | - Andreana Pexara
- Laboratory of Hygiene of Foods of Animal Origin, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.V.); (N.S.); (A.G.)
| | | | | |
Collapse
|
8
|
A survey on occurrence of ochratoxin A in the kidneys of slaughtered pigs in the Czech Republic during the years 2012–2021. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by several moulds of Aspergillus and Penicillium genera on many agricultural commodities used for feed production. It is primarily a nephrotoxic substance, but it can also cause immunosuppression in pigs and increase their susceptibility to infections. Porcine mycotoxic nephropathy (PMN) is a chronic poisoning associated with OTA exposure. The aim of this paper was to evaluate the content of OTA in pig kidneys which were examined during the regular monitoring of the safety and quality of food of animal origin in the Czech Republic during the years 2012–2021. Results revealed no differences between the monitored years or age categories and no differences between the year seasons, which could have an influence on the storage conditions and thus feed contamination by moulds. The values found in this study are low and similar to those assessed in several studies performed in other European countries and do not exceed the limits set in their legislation, which means these organs do not pose a risk for consumers and do not indicate PMN in monitored pigs. Czech Republic as well as EU legislation do not regulate OTA levels in the food of animal origin yet.
Collapse
|
9
|
Abstract
Documented cases of mycotoxin occurrence in meat products call for further research into potential contamination sources, especially given an ever more increasing consumption of these nutritionally rich products. These foodstuffs can be contaminated with mycotoxins through three pathways: contaminated spices and other raw materials, mycotoxin-producing moulds present on the surface of dry-cured meat products, and carry-over effect from farm animals exposed to contaminated feed. In order to establish meat products’ mycotoxin contamination more precisely, the concentrations of all mycotoxins of relevance for these products should be determined. This manuscript reviews data on major mycotoxins present in different types of meat products, and discusses the contamination pathways, contamination levels and control & preventative measures.
Collapse
|
10
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
11
|
Sadeghi E, Oskoei LB, Nejatian M, Mehr SS. Effect of microwave, deep frying and oven cooking on destruction of zearalenone in spiked maize oil. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are one of the most common types of chemical hazards related to edible oils. Although the refining process can remove such contaminations, they may still be present in the final oils due to defects during the refining steps. In addition, most oils produced in local manufactories are not refined and as such may be contaminated with mycotoxins. However, the effect of various cooking methods on the stability of mycotoxins in edible oils has rarely been studied. Hence, this study evaluated the impact of microwave, deep frying and oven cooking on the degradation of spiked zearalenone (50, 100 and 200 μg/l) in maize oil. Measurements were done by high performance liquid chromatography-fluorescence detection. The results showed that the majority of treatments, including time-temperature combinations of frying (130-190 °C for 2.5 and 5 min), oven cooking (110-230 °C for 2.5 and 5 min) and exposure time of microwave (2.5, 5 and 10 min) reduced zearalenone levels. Microwave cooking of samples containing 200 μg/l of zearalenone for 10 min showed the highest degradation of the toxin (~ 38%) following first order kinetics. The extent of destruction achieved by frying and oven cooking was also dependent on the initial concentration of zearalenone. These findings can be helpful to evaluate the chemical safety of edible oils or foods prepared by them.
Collapse
Affiliation(s)
- E. Sadeghi
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - L. Bohlouli Oskoei
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - M. Nejatian
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S. Solaimani Mehr
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Iemmi T, Menozzi A, Meucci V, Magnini I, Battaglia F, Severino L, Ariano A, Bertini S. Ochratoxin A Levels in Tissues of Wild Boars ( Sus scrofa) from Northern Italy. Toxins (Basel) 2020; 12:toxins12110706. [PMID: 33171643 PMCID: PMC7695140 DOI: 10.3390/toxins12110706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/03/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium, capable of contaminating several foodstuffs. OTA damages primarily the kidneys, and is suspected to be a carcinogenic substance, thus maximum levels for OTA in foodstuffs have been established in the EU. Italian Ministry of Health suggested a maximum level of 1 μg/kg OTA in pork meat and derived products. In this study, OTA concentrations in liver, kidney, and muscle of 64 wild boars (Sus scrofa) killed in two areas (area A and B) of Parma province (northern Italy), characterized by different habitat types, were assessed by HPLC-FLD technique. OTA was detected in 54% liver, 52% kidney, and 16% muscle samples. OTA levels were significantly higher in liver and kidney compared with muscle, and were above 1 μg/kg in 19 liver, 17 kidney, and 4 muscle samples. OTA levels in wild boars from area A resulted significantly higher with respect to those from area B, suggesting an environmental influence on OTA contamination in wild boars. This study seems to confirm that wild boar meat is a potential source of OTA, thus monitoring the presence of this mycotoxin in game meat might be recommended to prevent risks for human health.
Collapse
Affiliation(s)
- Tiziano Iemmi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (T.I.); (I.M.); (S.B.)
| | - Alessandro Menozzi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (T.I.); (I.M.); (S.B.)
- Correspondence:
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (V.M.); (F.B.)
| | - Irene Magnini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (T.I.); (I.M.); (S.B.)
| | - Federica Battaglia
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (V.M.); (F.B.)
| | - Lorella Severino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.S.); (A.A.)
| | - Andrea Ariano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.S.); (A.A.)
| | - Simone Bertini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (T.I.); (I.M.); (S.B.)
| |
Collapse
|
13
|
Kudumija N, Vulić A, Lešić T, Vahčić N, Pleadin J. Aflatoxins and ochratoxin A in dry-fermented sausages in Croatia, by LC-MS/MS. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:225-232. [PMID: 32419674 DOI: 10.1080/19393210.2020.1762760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study was to develop a highly-sensitive liquid chromatographic - tandem mass spectrometric (LC-MS/MS) method to investigate the presence of aflatoxins (AFB1, AFB2, AFG1 and AFG2) and ochratoxin A (OTA) in traditional homemade sausages (n = 88) collected from small family farms situated in different regions in Croatia. Aflatoxins were not detected (<LOD) in any of the analysed samples, whereas the percentage of OTA-positive homemade sausages was 14.8%, consisting of 1.1% Istrian sausages, 7.9% Slavonian sausages and 5.7% Kulenova Seka. In Slavonian sausages, the mean OTA concentration was 0.27 ± 0.09 μg/kg with a maximum of 0.38 μg/kg, while in Kulenova Seka the mean concentration was 0.26 ± 0.14 μg/kg, rising to a maximum of 0.48 μg/kg. Statistically significant differences (p = .243) in OTA concentrations across different types of homemade sausage and sampling regions were not determined.
Collapse
Affiliation(s)
- Nina Kudumija
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Zagreb, Croatia
| | - Ana Vulić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tina Lešić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Zagreb, Croatia
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Zagreb, Croatia
| |
Collapse
|
14
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
15
|
Pleadin J, Frece J, Markov K. Mycotoxins in food and feed. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:297-345. [PMID: 31351529 DOI: 10.1016/bs.afnr.2019.02.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Mycotoxins represent secondary fungal metabolites not essential to the normal growth and reproduction of a fungus, but capable of causing biochemical, physiological and pathological changes in many species. Harmful effects of mycotoxins observed in humans and animals include carcinogenicity, teratogenicity, immune toxicity, neurotoxicity, hepatotoxicity, nephrotoxicity, reproductive and developmental toxicity, indigestion and so forth. These substances can be found in a variety of very important agricultural and food products, primarily dependent of product moisture content, and its water activity, relative air humidity, temperature, pH value, composition of the food matrix, the degree of its physical damage, and the presence of mold spores. Given that industrial processing has no significant effect on their reduction and in order to be able to vouch for the absence of mycotoxins, it is necessary to process foodstuffs under standardized and well-controlled conditions and to control each and every loop of the food production and storage chain. Preventative measures capable of reducing the contamination to the minimum must be in place and should be exercised by all means. In case that contamination does happen, methods for mycotoxin reduction or elimination should be implemented in dependence on a number of parameters such as properties of food or feed. Further research is needed in order to identify conditions that facilitate the growth of mycotoxin-producing fungi and develop effective preventative measures that can reduce contamination of food and feed as also to recognize possible synergistic effects of different mycotoxins in organism.
Collapse
Affiliation(s)
- Jelka Pleadin
- Croatian Veterinary Institute, Laboratory for Analytical Chemistry, Zagreb, Croatia.
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Influence of oven and microwave cooking with the addition of herbs on the exposure to multi-mycotoxins from chicken breast muscle. Food Chem 2019; 276:274-284. [DOI: 10.1016/j.foodchem.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022]
|
17
|
Lee HJ, Gu BJ, Ganjyal G, Ryu D. Reduction of ochratoxin A in direct steam injected oat-based infant cereals with baking soda. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Lee HJ, Kim S, Suh HJ, Ryu D. Effects of explosive puffing process on the reduction of ochratoxin A in rice and oats. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Altafini A, Fedrizzi G, Roncada P. Occurrence of ochratoxin A in typical salami produced in different regions of Italy. Mycotoxin Res 2018; 35:141-148. [PMID: 30460520 DOI: 10.1007/s12550-018-0338-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
A total of 172 different salamis were purchased from farms and small salami factories located in four Italian regions (Piedmont, Veneto, Calabria, and Sicily) and analyzed for the presence of ochratoxin A (OTA). Analysis was performed by high-performance liquid chromatography coupled to a fluorimetric detector (HPLC-FLD). The detection limit (LOD) for the method used was 0.05 μg/kg, while the quantitation limit (LOQ) was 0.20 μg/kg; the average recovery rate was 89.1%. OTA was detected in 22 salamis, and 3 samples exceeded the Italian guidance value for OTA in pork meat (1 μg/kg). In particular, what emerges from this research is the high percentage of spicy salamis among positive samples (68.2%, 15 out of 22), although spicy salamis are only 27.3% of the total number of samples collected and analyzed. Red chili pepper contaminated by OTA could be responsible for the presence of the mycotoxin in these spicy salamis. It follow that, also the control of some ingredients used in the manufacture of these meat products, like spices, should not be neglected.
Collapse
Affiliation(s)
- Alberto Altafini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Giorgio Fedrizzi
- Reparto chimico degli alimenti, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via P. Fiorini 5, 40127, Bologna, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| |
Collapse
|
20
|
Altafini A, Armorini S, Zaghini A, Sardi L, Roncada P. Tissue distribution of ochratoxin A in pigs after administration of two-levels contaminated diets. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to determine the levels of ochratoxin A (OTA) in pigs experimentally exposed to this mycotoxin and to evaluate if bile may be used to assess exposure to OTA. Twelve hybrid pigs were divided into 3 equal groups, a control group D0, and 2 experimental groups, D1 fed with 50 µg OTA/kg diet, and D2 fed with 500 µg OTA/kg diet for 15 days. At the end of the test, the animals were euthanized and samples of different tissues and biological fluids were analysed by HPLC-fluorescence detection for the presence of OTA. Samples of unconventional edible tissues such as lung and heart were also taken for analysis because they are used in typical Italian regional dishes. The Italian guidance value for OTA of 1 µg/kg established for pork meat and derived products has been exceeded in all the matrices from both the experimental groups. The comparison between OTA levels detected in D1 and D2 groups showed clearly a linear dose-response relationship. Based on the mean values measured, OTA distribution follows the order blood plasma > lung > kidney (in D1 group), heart (in D2 group) > heart (in D1 group), kidney (in D2 group) > bile > liver > fat > muscle. Analysis of bile can be useful for the detection of OTA in pigs. However, since blood can easily be taken from pigs, and given the correlation between the mycotoxin concentration detected in this matrix and the concentrations detected in the others, OTA level in blood is a more viable approach to assessing the presence of OTA in edible tissues. As lung and heart may contain high concentrations of OTA, the analytical controls should also include these matrices.
Collapse
Affiliation(s)
- A. Altafini
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum – University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy
| | - S. Armorini
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum – University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy
| | - A. Zaghini
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum – University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy
| | - L. Sardi
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum – University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy
| | - P. Roncada
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Alma Mater Studiorum – University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy
| |
Collapse
|
21
|
Pleadin J, Zadravec M, Brnić D, Perković I, Škrivanko M, Kovačević D. Moulds and mycotoxins detected in the regional speciality fermented sausage ‘slavonski kulen’ during a 1-year production period. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:282-290. [DOI: 10.1080/19440049.2016.1266395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Dahal S, Lee HJ, Gu K, Ryu D. Heat Stability of Ochratoxin A in an Aqueous Buffered Model System. J Food Prot 2016; 79:1748-1752. [PMID: 28221848 DOI: 10.4315/0362-028x.jfp-16-160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ochratoxin A (OTA) represents one of the most widespread mycotoxins in agricultural commodities in the world and is considered a possible human carcinogen with its potent nephrotoxicity. OTA is stable under most food processing conditions; however, higher-temperature treatment may reduce OTA content in foods. Since OTA can be found in processed products destined for both human and animal consumption, factors affecting its stability or reduction during thermal processes were investigated here. The reduction of OTA was measured during various heating times (up to 60 min) at different temperatures (100, 125, 150, 175, and 200°C) in aqueous buffer solutions at different pHs (pH 4, 7, and 10). Quantification of OTA was carried out using high-performance liquid chromatography with fluorescence detection. The results showed that the rate and extent of OTA reduction were dependent on pH, processing time, and temperature; greater than 90% OTA reduction was achieved at 200°C for all treatments except pH 4. After processing under an alkaline condition (pH 10) at 100°C for 60 min, about 50% of the OTA was lost, while after 60 min under neutral and acidic conditions at 100°C, significant reductions of OTA were not shown.
Collapse
Affiliation(s)
- Samjhana Dahal
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA
| | - Hyun Jung Lee
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA
| | - Kejia Gu
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA.,Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, People's Republic of China
| | - Dojin Ryu
- School of Food Science, University of Idaho, 875 Perimeter Drive MS 2312, Moscow, Idaho 83844-2312, USA
| |
Collapse
|
23
|
Ochratoxin A contamination of the autochthonous dry-cured meat product “Slavonski Kulen” during a six-month production process. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Domijan AM, Pleadin J, Mihaljević B, Vahčić N, Frece J, Markov K. Reduction of ochratoxin A in dry-cured meat products using gamma-irradiation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1185-91. [DOI: 10.1080/19440049.2015.1049219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Pleadin J, Staver MM, Vahčić N, Kovačević D, Milone S, Saftić L, Scortichini G. Survey of aflatoxin B 1 and ochratoxin A occurrence in traditional meat products coming from Croatian households and markets. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Pleadin J, Kovačević D, Perković I. Impact of Casing Damaging on Aflatoxin B1Concentration During the Ripening of Dry-Fermented Meat Sausages. J Immunoassay Immunochem 2015; 36:655-66. [DOI: 10.1080/15321819.2015.1032306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|