1
|
Mancuso G, Violi F, Nocella C. Food contamination and cardiovascular disease: a narrative review. Intern Emerg Med 2024; 19:1693-1703. [PMID: 38743129 PMCID: PMC11405437 DOI: 10.1007/s11739-024-03610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Cardiovascular disease is a significant cause of morbidity and mortality among non-communicable diseases worldwide. Evidence shows that a healthy dietary pattern positively influences many risk factors of cardiometabolic health, stroke, and heart disease, supported by the effectiveness of healthy diet and lifestyles for the prevention of CVD. High quality and safety of foods are prerequisites to ensuring food security and beneficial effects. Contaminants can be present in foods mainly because of contamination from environmental sources (water, air, or soil pollution), or artificially introduced by the human. Moreover, the cross-contamination or formation during food processing, food packaging, presence or contamination by natural toxins, or use of unapproved food additives and adulterants. Numerous studies reported the association between food contaminants and cardiovascular risk by demonstrating that (1) the cross-contamination or artificial sweeteners, additives, and adulterants in food processing can be the cause of the risk for major adverse cardiovascular events and (2) environmental factors, such as heavy metals and chemical products can be also significant contributors to food contamination with a negative impact on cardiovascular systems. Furthermore, oxidative stress can be a common mechanism that mediates food contamination-associated CVDs as substantiated by studies showing impaired oxidative stress biomarkers after exposure to food contaminants.This narrative review summarizes the data suggesting how food contaminants may elicit artery injury and proposing oxidative stress as a mediator of cardiovascular damage.
Collapse
Affiliation(s)
- Gerardo Mancuso
- Internal Medicine Unit, Department of Medicine and Medical Specialties, Lamezia Terme Hospital, 88046, Lamezia Terme, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
2
|
Mahmudiono T, Fakhri Y, Adiban M, Sarafraz M, Mohamadi S. Concentration of potential toxic elements in canned tuna fish: systematic review and health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2619-2637. [PMID: 37820694 DOI: 10.1080/09603123.2023.2264205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The health risks (non-carcinogenic and carcinogenic risk) were calculated in both adults and children, using target hazard quotient (THQ) and carcinogenic risk (CR). The concentrations of Cd, Pb, and Ni were higher than the standard limits but they did not pose any non-carcinogenic health risks in adult and children's consumers (THQ <1). Meanwhile, the risk assessment of iAs indicates THQ > 1 for children in Egypt. Moreover, the THQ value due to Me Hg for adult in Tunisia and for children in Tunisia, Malta, Portugal, Latvia, Cambogia, Peru, South Korea, Romania, Hong Kong, United Arab Emirates, Morocco, and Egypt was higher than 1 value. In addition, the calculated CR values of iAs for the adults and children were within the threshold risk of developing cancer (Between 1.00E-4 to 1.00E-6). Therefore, it is recommended to continuously monitor the concentration of PTEs in canned tuna.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
- Center for Health and Nutrition Education, Counselling and Empowerment (CHeNECE), Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Moayed Adiban
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran
| | - Mansour Sarafraz
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-kord University, Shahre-kord, Iran
| |
Collapse
|
3
|
Vejrup K, Brantsæter AL, Caspersen IH, Haug LS, Villanger GD, Aase H, Knutsen HK. Mercury exposure in the Norwegian Mother, Father, and Child Cohort Study - measured and predicted blood concentrations and associations with birth weight. Heliyon 2024; 10:e30246. [PMID: 38726118 PMCID: PMC11078626 DOI: 10.1016/j.heliyon.2024.e30246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Background Blood total mercury concentration (BTHg) predominantly contains methyl Hg from seafood, and less inorganic Hg. Measured BTHg is often available only in a small proportion of large cohort study samples. Associations between estimated dietary intake of total Hg (THg) and lower birth weight within strata of maternal seafood intake was previously reported in the Norwegian Mother, Father, and Child Cohort Study (MoBa). However, maternal seafood consumption was associated with increased birth weight, indicating negative confounding by seafood in the association between THg intake and birth weight. Using predicted BTHg as a proxy for measured BTHg, we hypothesized that predicted BTHg would be associated with decreased birth weight. Objectives To develop and validate a prediction model for BTHg in MoBa and to examine the association between predicted BTHg and birth weight in the MoBa population. Methods Using linear regression, measured maternal BTHg (n = 1437) was used to build the best fitting model (highest R-squared value). Model validation (n = 1436) was based on correlation and weighted Kappa (Кw). Associations between predicted BTHg in the MoBa population (n = 86,775) or measured BTHg (n = 3590) and birth weight were assessed by multivariate linear regression models. Results The best fitting model had R-squared = 0.3 and showed strong correlation (r = 0.53, p < 0.001) between predicted and measured BTHg. Cross-classification (quintiles) showed 73 % correctly classified and 3.3 % grossly misclassified, with Кw of 0.37. Measured BTHg was not associated with birth weight. Predicted BTHg was significantly associated with higher birth weight. There were no trends in birth weight with increasing quintiles of measured or predicted BTHg after stratification into high or low seafood consumption. Conclusions The results indicate that prediction of BTHg did not overcome negative confounding of the association between Hg exposure and birth weight by seafood intake. Furthermore, effect on birth weight of toxicological concern is unexpected in our observed BTHg range.
Collapse
Affiliation(s)
- Kristine Vejrup
- Institute of Military Epidemiology, Norwegian Armed Forces Joint Medical Serviced, Norway
| | - Anne Lise Brantsæter
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Norway
| | - Ida H. Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Norway
| | - Line S. Haug
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Norway
| | - Gro D. Villanger
- Department of Child Health and Development, Norwegian Institute of Public Health, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, Norway
| | - Helle K. Knutsen
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Norway
| |
Collapse
|
4
|
Moksnes MR, Hansen AF, Wolford BN, Thomas LF, Rasheed H, Simić A, Bhatta L, Brantsæter AL, Surakka I, Zhou W, Magnus P, Njølstad PR, Andreassen OA, Syversen T, Zheng J, Fritsche LG, Evans DM, Warrington NM, Nøst TH, Åsvold BO, Flaten TP, Willer CJ, Hveem K, Brumpton BM. A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Commun Biol 2024; 7:432. [PMID: 38594418 PMCID: PMC11004147 DOI: 10.1038/s42003-024-06101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.
Collapse
Affiliation(s)
- Marta R Moksnes
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ailin F Hansen
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Brooke N Wolford
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent F Thomas
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Anica Simić
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tore Syversen
- Department of Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David M Evans
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Nicole M Warrington
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Therese H Nøst
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Peder Flaten
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen J Willer
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
| | - Ben M Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway.
- Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
5
|
Hussein MA, Morsy NS, Mahmoud AF, Darwish WS, Elabbasy MT, Zigo F, Farkašová Z, Rehan IF. Risk assessment of toxic residues among some freshwater and marine water fish species. Front Vet Sci 2023; 10:1185395. [PMID: 37559893 PMCID: PMC10407656 DOI: 10.3389/fvets.2023.1185395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Egypt has several beaches, as well as the Nile River and a few lakes; therefore, it could compensate for the lack of protein in red meat with fish. Fish, however, may become a source of heavy metal exposure in humans. The current study was to assess the level of five toxic metals, lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), and aluminum (Al), in six species, namely, Oreochromis niloticus (O. niloticus), Mugil cephalus (M. cephalus), Lates niloticus (L. niloticus), Plectropomus leopardus (P. leopardus), Epinephelus tauvina (E. tauvina), and Lethrinus nebulosus (L. nebulosus), collected from the El-Obour fish market in Egypt. The residual concentrations of the tested toxic metals in the examined O. niloticus, M. cephalus, L. niloticus, E. tauvina, P. leopardus, and L. nebulosus species were found to be higher than the European Commission's maximum permissible limits (MPL) for Pb and Cd by 10 and 20%, 15 and 65%, 75 and 15%, 20 and 65%, 15 and 40%, and 25 and 5%. In contrast, 30% of L. niloticus exceeded the MPL for Hg. It was shown that the average estimated daily intake (EDI) and the target hazard quotient (THQ) in fish samples are below safety levels for human consumption and hazard index (HI < 1). From the human health point of view, this study showed that there was no possible health risk to people due to the intake of any studied species under the current consumption rate in the country.
Collapse
Affiliation(s)
- Mohamed A. Hussein
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nanis S. Morsy
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abdallah F. Mahmoud
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wageh S. Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed T. Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Hail University, Hail, Saudi Arabia
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University Yagotoyama, Nagoya, Japan
| |
Collapse
|
6
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
7
|
Camacho J, de Conti A, Pogribny IP, Sprando RL, Hunt PR. Assessment of the effects of organic vs. inorganic arsenic and mercury in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100071. [PMID: 35602005 PMCID: PMC9118485 DOI: 10.1016/j.crtox.2022.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.
Collapse
Key Words
- Alternative Toxicity Model
- Arsenic
- DEGs, Differentially Expressed Genes
- DMA, dimethylarsinic acid
- ER, endoplasmic reticulum
- EXT, extinction (a measure of optical density)
- GO, gene ontology
- HgCl2, mercury(ii) chloride
- Inorganic
- L1, first larval stage C. elegans
- LD50, the median lethal dose per kilogram of body weight
- LOEL, lowest observed effect level
- Mercury
- NOEL, no observed effect level
- NaAsO2, sodium (meta)arsenite
- Organic
- OxStrR, Oxidative Stress Response
- Predictive Toxicology
- TOF, time of flight (a measure of size)
- UPR, Unfolded Protein Response
- iAs, inorganic arsenic
- meHgCl, methylmercury chloride
Collapse
Affiliation(s)
- Jessica Camacho
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Aline de Conti
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Igor P. Pogribny
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Robert L. Sprando
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Piper Reid Hunt
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| |
Collapse
|
8
|
Alcala-Orozco M, Balcom PH, Sunderland EM, Olivero-Verbel J, Caballero-Gallardo K. Essential and toxic elements in sardines and tuna on the Colombian market. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:206-218. [PMID: 34098855 DOI: 10.1080/19393210.2021.1926547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The presence of metals in canned fish has been associated with adverse effects on human health. The aim of this study was to evaluate risk-based fish consumption limits based on the concentrations of eight essential elements and four elements of toxicological concern in sardines and tuna brands commercially available in the Latin American canned goods market. One brand of canned sardines and six of canned tuna were collected and evaluated by ICP-MS and direct mercury analysis. The Hg content was much higher than that previously observed in scientific literature. According to the calculated hazard quotients, all brands may present some risk in terms of this element, especially brand F in which levels up to 3.1 µg/g were measured. Sardine samples surpassed the maximum limits of Mn and As. Stricter quality control in retail chains and industries should be implemented in order to guarantee safe levels in fishery products.
Collapse
Affiliation(s)
- Maria Alcala-Orozco
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia.,Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Prentiss H Balcom
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Elsie M Sunderland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia.,Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
9
|
Novakov NJ, Kartalović BD, Mihaljev ŽA, Mastanjević KM, Stojanac NS, Habschied KJ. Heavy metals and PAHs in mussels on the Serbian market and consumer exposure. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:219-226. [PMID: 34078251 DOI: 10.1080/19393210.2021.1931475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The goal of the study was to investigate the concentration of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in 84 samples of mussels, collected from supermarkets and fish markets in Serbia. Lead, cadmium, mercury and arsenic concentrations were determined using an inductive coupled plasma mass spectrometry method. Sixteen PAHs were determined using a gas chromatography-mass spectrometry method. Heavy metals in the mussels were in the range (mg/kg) of 0.01-0.74 for lead, 0.01-0.38 for cadmium, 0.01-0.15 for mercury and 1.12-5.87 for arsenic. Metals and PAHs levels in all analysed samples were under the legal European and Serbian legislation limits. The provisional tolerable intake values were calculated on the base of the obtainable values of heavy metals. Mussels are considered to be safe for human consumption. However, one should take care of the amount and frequency of mussel consumption, primarily due to consumer's cadmium and mercury burden.
Collapse
Affiliation(s)
- Nikolina J Novakov
- Associate Professor in Fish Diseases and Fishery, Department of Veterinary Medicine, Univesity of Novi Sad, Novi Sad, Serbia
| | - Brankica D Kartalović
- Research Associate in Analytical Chemistry, Department for Food and Feed Quality, Bureau for Food Safety and Drug Analysis, Research Veterinary Institute Novi Sad, Novi Sad, Serbia
| | - Željko A Mihaljev
- Research Associate in Analytical Chemistry, Department for Food and Feed Quality, Bureau for Food Safety and Drug Analysis, Research Veterinary Institute Novi Sad, Novi Sad, Serbia
| | - Krešimir M Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croata
| | - Nenad S Stojanac
- Associate Professor in Fish Diseases and Fishery, Department of Veterinary Medicine, Univesity of Novi Sad, Novi Sad, Serbia
| | - Kristina J Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croata
| |
Collapse
|
10
|
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol 2021; 36:e2021003-0. [PMID: 33730790 PMCID: PMC8207007 DOI: 10.5620/eaht.2021003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Several millions of people are exposed to cadmium worldwide due to natural and anthropogenic activities that led to their widespread distribution in the environment and have shown potential adverse effects on the kidneys, liver, heart and nervous system. Recently human and animal-based studies have been shown that In utero and early life exposure to cadmium can have serious health issues that are related to the risk of developmental disabilities and other outcomes in adulthood. Since, cadmium crosses the placental barrier and reaches easily to the fetus, even moderate or high-level exposure of this metal during pregnancy could be of serious health consequences which might be reflected either in the children’s early or later stages of life. Mortality from various diseases including cancer, cardiovascular, respiratory, kidney and neurological problems, correlation with In utero or early life exposure to cadmium has been found in epidemiological studies. Animal studies with strong evidence of various diseases mostly support for the human studies, as well as suggested a myriad mechanism by which cadmium can interfere with human health and development. More studies are needed to establish the mechanism of cadmium-induced toxicity with environmentally relevant doses in childhood and later life. In this review, we provide a comprehensive examination of the literature addressing potential long- term health issues with In utero and early life exposure to cadmium, as well as correlating with human and animal exposure studies.
Collapse
Affiliation(s)
- Lalit Chandravanshi
- Department of Forensic Science, College and Traffic Management- Institute of Road and Traffic Education, Faridabad - Haryana - 121010, India
| | - Kunal Shiv
- Division of Forensic Science, School of Basic & Applied Sciences, Galgotias University Greater Noida - 201306, India
| | - Sudhir Kumar
- Forensic Science laboratory, Modinagar, Ghaziabad - 201204, India
| |
Collapse
|
11
|
Dahl L, Duinker A, Næss S, Markhus MW, Nerhus I, Midtbø LK, Kjellevold M. Iodine and Mercury Content in Raw, Boiled, Pan-Fried, and Oven-Baked Atlantic Cod ( Gadus morhua). Foods 2020; 9:foods9111652. [PMID: 33198149 PMCID: PMC7697562 DOI: 10.3390/foods9111652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 01/07/2023] Open
Abstract
There is a lack of scientific evidence regarding the stability of iodine and mercury during cooking and processing of seafood. In this study, the iodine and mercury content were determined after thawing frozen fillets of Atlantic cod (Cadus morhua), and further in raw compared to boiled, pan-fried, and oven baked fillets. Iodine was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and mercury by atomic absorption spectrophotometry with Direct Mercury Analyzer (DMA-80). Thawing of the cod resulted on average in a 12% loss of iodine to the thawing water. Boiling significantly decreased the total content of iodine per slice of cod fillet corresponding to the concentration of iodine found in the boiling water. Pan-frying and oven-baking did not cause any significant changes of the total iodine content per slice of cod fillet, although iodine content per 100 g increased due to weight reduction of the cod slices from evaporation of water during preparation. For mercury, we found minimal changes of the different cooking methods. In summary, the findings in our study show that boiling had the greatest effect on the iodine content in the cod fillets. Type of cooking method should be specified in food composition databases as this in turn may influence estimation of iodine intake.
Collapse
|