1
|
Liu J, Zhang Y, Ji T, Li H, Mao B, Ma X. Artificial oocyte activation technology as adjuvant therapy for primary ciliary dyskinesia: a report of eight cases and literature review. J Assist Reprod Genet 2025:10.1007/s10815-025-03486-6. [PMID: 40257705 DOI: 10.1007/s10815-025-03486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025] Open
Abstract
OBJECTIVE To explore the clinical application effect and feasibility of intracytoplasmic sperm injection (ICSI) combined with artificial oocyte activation (AOA) technology in the treatment of male infertility caused by primary ciliary dyskinesia (PCD). CASES REPORT Between April 2022 and April 2024, our hospital's reproductive center treated a total of eight patients diagnosed with PCD and concurrent male infertility. Among them, six patients were treated with ICSI in conjunction with AOA as an adjuvant therapy, with their oocytes being subjected to ionomycin treatment for a duration of 15 min post-ICSI. One patient underwent ICSI alone, while another patient chose to use donor sperm. Ultimately, we assessed the fertilization rates and transferable embryo rates of all patients. The statistical results showed that the six patients who received ICSI combined with AOA achieved an average fertilization rate of 77.9% and a transferable embryo rate of 66.7%. Four of these patients achieved clinical pregnancy and live birth after embryo transfer. In contrast, the patient who received only ICSI had a fertilization rate of 51.7% and a transferable embryo rate of 20%. CONCLUSIONS AOA can be used as an adjuvant treatment in ICSI cycles for patients with PCD accompanied by male infertility. It not only increases the fertilization rate but also potentially improves embryo quality, thereby enhancing the transferable embryo rate.
Collapse
Affiliation(s)
- Jiao Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yabing Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Tingting Ji
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxing Li
- Center of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Bin Mao
- Center of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China.
- Center of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Jiang D, Yang Y, Han X, Li Q, Ma Y, Jiao J, Chao L. Lipid metabolism-mediated fertility decline in male mice exposed to Fluorene-9-bisphenol: An integrated DNA methylation and transcriptomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118116. [PMID: 40168817 DOI: 10.1016/j.ecoenv.2025.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Fluorene-9-bisphenol (BHPF), a widely recognized alternative to bisphenol A (BPA), has been increasingly used in a wide range of industries. However, despite numerous studies, the direct mechanism underlying its male reproductive toxicity remains poorly understood. Here, a BHPF-exposed mouse model was established to evaluate the effect of BHPF on male fertility. The results showed that BHPF exposure induced reproductive dysfunction, including testis damage, spermatogenesis impairment, steroid hormone disruption and sperm quality degradation. Mechanistically, over 90,000 differentially methylated regions were identified and increased global testicular methylation levels indicated that DNA methylation may be associated with BHPF-induced testicular damage. Transcriptome analysis revealed 221 up-regulated genes and 227 down-regulated genes in BHPF-exposed mice, mainly enriched in the steroid biosynthetic pathway. Further combined methylome and transcriptome analysis revealed the critical methylated genes potentially involved in lipid metabolism. The differentially expressed genes (Cyp4a10 and Rdh1) were further confirmed to correlate with impaired male mouse fertility. Taken together, the results of this study provide a better understanding of the molecular mechanisms of toxicity effects induced by BHPF exposure from the perspective of methylome and transcriptome.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Yingxiu Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Jun Jiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
4
|
Kamath MS, Vogiatzi P, Sunkara SK, Woodward B. Oocyte activation for women following intracytoplasmic sperm injection (ICSI). Cochrane Database Syst Rev 2024; 12:CD014040. [PMID: 39704318 PMCID: PMC11660229 DOI: 10.1002/14651858.cd014040.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND Intracytoplasmic sperm injection (ICSI), a type of assisted reproductive technology (ART), is offered as a treatment option for male factor infertility. Over the years, the indications for ICSI have been expanded, despite uncertainty about its benefits and harms compared to the conventional method of achieving fertilisation. Artificial oocyte activation (AOA), which can be performed by chemical, electrical or mechanical intervention, has been employed during ART ICSI treatment where there has been a history of low fertilization rate or total fertilization failure, and it has been reported to improve reproductive outcomes. It is important to evaluate the clinical effectiveness and safety of AOA in women undergoing ART ICSI treatment. OBJECTIVES To evaluate the benefits and harms of artificial oocyte activation in women affected by infertility undergoing intracytoplasmic sperm injection treatment. SEARCH METHODS We searched the following electronic databases: the Cochrane Gynaecology and Fertility Group Specialised Register, CENTRAL, MEDLINE, Embase, ClinicalTrials.gov and WHO international Clinical Trials Registry Platform (8 August 2024). We also searched reference lists of relevant articles and contacted experts in the field. SELECTION CRITERIA Randomized controlled trials comparing artificial oocyte activation (AOA) (chemical, electrical or mechanical interventions) versus no intervention, placebo or another method of AOA in women undergoing ART. DATA COLLECTION AND ANALYSIS We used methodological procedures as per Cochrane recommendations. We assessed the risk of bias in the included studies using ROB 2. The primary outcomes were live birth and miscarriage rates. We analyzed data using the risk ratio (RR) and a fixed-effect model. We assessed the certainty of the evidence by using GRADE criteria. We restricted the primary analyses to studies at low risk of bias. MAIN RESULTS We included a total of 20 studies, four of which were participant-based randomized trials with 743 participants. The remaining 16 were sibling-oocyte-model randomized studies. We based the main clinical findings of the current review on the participant-based RCTs, and we restricted our primary analysis to studies with a low risk of bias. Based on the one trial with 343 participants that we included in our primary analysis, the evidence is very uncertain about the effect of AOA on the live birth rate when compared to conventional ICSI without AOA in women undergoing ART ICSI (RR 1.97, 95% CI 1.29 to 3.01; one trial; 343 participants). For a typical clinic with a live birth rate of 18% following ART, the addition of AOA may result in live birth rates between 24% and 55%, but this evidence is very uncertain. The evidence is very uncertain about the effect of AOA on the miscarriage rate compared to conventional ICSI without AOA in women undergoing ART ICSI (RR 0.99, 95% CI 0.48 to 2.04; one trial; 343 participants). If the miscarriage rate was 9% following ART, addition of oocyte activation may result in miscarriage rates between 4% and 18%, but this evidence is very uncertain. The evidence is very uncertain about the effect of AOA on the clinical pregnancy rate compared to conventional ICSI without AOA in women undergoing ART ICSI (RR 1.67, 95% CI 1.20 to 2.32; one trial; 343 participants). The evidence is very uncertain about the effect of AOA on the multiple pregnancy rate per participant compared to conventional ICSI without AOA in women undergoing ART ICSI (RR 1.91, 95% CI 0.48 to 7.67; one trial; 343 participants). The evidence is very uncertain about the effect of AOA on the total fertilization failure rate compared to conventional ICSI without AOA in women undergoing ART ICSI (RR 0.05, 95% CI 0.01 to 0.40; one trial; 343 participants). When we stratified our analysis according to various infertility factors, we found low-certainty evidence that in couples undergoing ICSI treatment who have had a history of low or no fertilization, AOA may help improve the live birth rate while making little or no difference to the miscarriage rate. Further research is needed to confirm or refute this finding. None of the trials reported congenital anomalies (birth defects) as an outcome. Lack of short- or long-term safety data is an important limitation of the review and of the trials in this field. We did not find any trials that compared two different methods of oocyte activation. AUTHORS' CONCLUSIONS We are uncertain about the effect of AOA on the live birth and miscarriage rates in women undergoing ART ICSI. In the subpopulation of those who have had a previous history of low or no fertilization, AOA may result in an increase in the live birth rate when compared to conventional ICSI without AOA, while making little or no difference to the miscarriage rate. There was considerable variation in the protocols used for chemical AOA, which affects the generalizability of the findings. Due to the very low to low certainty of evidence, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Mohan S Kamath
- Department of Reproductive Medicine and Surgery, Christian Medical College, Vellore, India
| | | | - Sesh Kamal Sunkara
- Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | |
Collapse
|
5
|
Azil S, Mbaye MM, Louanjli N, Ghazi B, Benkhalifa M. Phospholipase C zeta: a hidden face of sperm for oocyte activation and early embryonic development. Obstet Gynecol Sci 2024; 67:467-480. [PMID: 39086217 PMCID: PMC11424188 DOI: 10.5468/ogs.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Oocyte activation is a fundamental event in mammalian fertilization and is initiated by a cascade of calcium signaling and oscillation pathways. Phospholipase C zeta (PLCζ) is involved in modulating cortical granule exocytosis, releasing oocyte meiotic arrest, regulating gene expression, and early embryogenesis. These processes are considered to be initiated and controlled by PLCζ activity via the inositol-1,4,5-triphosphate pathway. The decrease or absence of functional PLCζ due to mutational defects in protein expression or maintenance can impair male fertility. In this literature review, we highlight the significance of PLCζ as a sperm factor involved in oocyte activation, its mechanism of action, the signaling pathway involved, and its close association with oocyte activation. Finally, we discuss the relationship between male infertility and PLCζ deficiency.
Collapse
Affiliation(s)
- Soukaina Azil
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Modou Mamoune Mbaye
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Noureddine Louanjli
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Bouchra Ghazi
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
| | - Moncef Benkhalifa
- Reproductive Medicine, Developmental and Reproductive Biology, Regional University Hospital & School of Medicine and Peritox Laboratory, Picardie University Jules Verne, Amiens, France
| |
Collapse
|
6
|
Gonzalez-Martin R, Palomar A, Perez-Deben S, Salsano S, Quiñonero A, Caracena L, Rucandio I, Fernandez-Saavedra R, Fernandez-Martinez R, Conde-Vilda E, Quejido AJ, Giles J, Vidal C, Bellver J, Dominguez F. Associations between Non-Essential Trace Elements in Women's Biofluids and IVF Outcomes in Euploid Single-Embryo Transfer Cycles. J Xenobiot 2024; 14:1093-1108. [PMID: 39189177 PMCID: PMC11348048 DOI: 10.3390/jox14030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Previous studies have found inconsistent associations between heavy metals and metalloids (cadmium, lead, mercury, and arsenic), and reproductive outcomes. The biofluid concentrations of ten non-essential trace elements (Hg, Pb, As, Ba, Sr, Rb, Cs, Sn, Ni, and Co) were evaluated in 51 Spanish women undergoing ICSI, PGT-A, and SET/FET. Nine out of ten non-essential elements were detectable in follicular fluid, whole blood, and urine collected the day of vaginal oocyte retrieval (VOR) and the day of embryo transfer and then analyzed by ICP-MS or Tricell DMA-80 for mercury. Elevated mercury and strontium concentrations in follicular fluid were associated with poor ovarian response and preimplantation outcomes. Worst preimplantation outcomes were also identified in women with elevated whole-blood strontium or mercury, urinary arsenic, barium, and tin the day of VOR. High concentrations of urinary rubidium on VOR day were linked with enhanced fertilization and blastocyst development. Excessive titanium in whole blood was associated with lower odds of implantation, clinical pregnancy, and achieving a live birth in a given IVF cycle. Excessive urinary arsenic on the day of embryo transfer was associated with lower odds of live birth. Although these preliminary results need to be confirmed in larger populations, distinguishing organic and inorganic element forms, our findings show that some non-essential elements have a detrimental impact on human IVF outcomes.
Collapse
Affiliation(s)
- Roberto Gonzalez-Martin
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Andrea Palomar
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Silvia Perez-Deben
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Stefania Salsano
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Alicia Quiñonero
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| | - Laura Caracena
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
| | - Isabel Rucandio
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (I.R.); (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Rocio Fernandez-Saavedra
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (I.R.); (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Rodolfo Fernandez-Martinez
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (I.R.); (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Estefania Conde-Vilda
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (I.R.); (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Alberto J. Quejido
- Unit of Mass Spectrometry and Geochemical Applications, Chemistry Division, Department of Technology, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; (I.R.); (R.F.-S.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Juan Giles
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
| | - Carmen Vidal
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
| | - Jose Bellver
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
- IVI-RMA Global Research Alliance, IVI-RMA Valencia, 46015 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine of Valencia, 46010 Valencia, Spain
| | - Francisco Dominguez
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (A.P.); (A.Q.); (L.C.); (J.G.); (C.V.); (J.B.)
| |
Collapse
|
7
|
Saleh A, Thanassoulas A, Aliyev E, Swann K, Naija A, Yalcin HC, Lai FA, Nomikos M. Development of Recombinant PLC-Zeta Protein as a Therapeutic Intervention for the Clinical Treatment of Oocyte Activation Failure. Biomedicines 2024; 12:1183. [PMID: 38927390 PMCID: PMC11201047 DOI: 10.3390/biomedicines12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
The sperm-specific phospholipase C zeta (PLCζ) protein is widely considered as the predominant physiological stimulus for initiating the Ca2+ release responsible for oocyte activation during mammalian fertilization. The increasing number of genetic and clinical reports that directly link PLCζ defects and/or deficiencies with oocyte activation failure (OAF) necessitates the use of a powerful therapeutic intervention to overcome such cases of male factor infertility. Currently, in vitro fertilization (IVF) clinics treat OAF cases after intracytoplasmic sperm injection (ICSI) with Ca2+ ionophores. Despite their successful use, such chemical agents are unable to trigger the physiological pattern of Ca2+ oscillations. Moreover, the safety of these ionophores is not yet fully established. We have previously demonstrated that recombinant PLCζ protein can be successfully used to rescue failed oocyte activation, resulting in efficient blastocyst formation. Herein, we produced a maltose binding protein (MBP)-tagged recombinant human PLCζ protein capable of inducing Ca2+ oscillations in mouse oocytes similar to those observed at fertilization. Circular dichroism (CD) experiments revealed a stable, well-folded protein with a high helical content. Moreover, the recombinant protein could retain its enzymatic properties for at least up to 90 days after storage at -80 °C. Finally, a chick embryo model was employed and revealed that exposure of fertilized chicken eggs to MBP-PLCζ did not alter the embryonic viability when compared to the control, giving a first indication of its safety. Our data support the potential use of the MBP-PLCζ recombinant protein as an effective therapeutic tool but further studies are required prior to its use in a clinical setting.
Collapse
Affiliation(s)
- Alaaeldin Saleh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Angelos Thanassoulas
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Elnur Aliyev
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Karl Swann
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Azza Naija
- Biomedical Research Center, Qatar University, Doha 2713, Qatar (H.C.Y.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar (H.C.Y.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - F. Anthony Lai
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Michail Nomikos
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
8
|
Kapper C, Oppelt P, Ganhör C, Gyunesh AA, Arbeithuber B, Stelzl P, Rezk-Füreder M. Minerals and the Menstrual Cycle: Impacts on Ovulation and Endometrial Health. Nutrients 2024; 16:1008. [PMID: 38613041 PMCID: PMC11013220 DOI: 10.3390/nu16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The role of minerals in female fertility, particularly in relation to the menstrual cycle, presents a complex area of study that underscores the interplay between nutrition and reproductive health. This narrative review aims to elucidate the impacts of minerals on key aspects of the reproductive system: hormonal regulation, ovarian function and ovulation, endometrial health, and oxidative stress. Despite the attention given to specific micronutrients in relation to reproductive disorders, there is a noticeable absence of a comprehensive review focusing on the impact of minerals throughout the menstrual cycle on female fertility. This narrative review aims to address this gap by examining the influence of minerals on reproductive health. Each mineral's contribution is explored in detail to provide a clearer picture of its importance in supporting female fertility. This comprehensive analysis not only enhances our knowledge of reproductive health but also offers clinicians valuable insights into potential therapeutic strategies and the recommended intake of minerals to promote female reproductive well-being, considering the menstrual cycle. This review stands as the first to offer such a detailed examination of minerals in the context of the menstrual cycle, aiming to elevate the understanding of their critical role in female fertility and reproductive health.
Collapse
Affiliation(s)
- Celine Kapper
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Peter Oppelt
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Ayberk Alp Gyunesh
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Barbara Arbeithuber
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Patrick Stelzl
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Marlene Rezk-Füreder
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| |
Collapse
|
9
|
Antonouli S, Di Nisio V, Messini C, Samara M, Salumets A, Daponte A, Anifandis G. Sperm plasma membrane ion transporters and male fertility potential: A perspective under the prism of cryopreservation. Cryobiology 2024; 114:104845. [PMID: 38184269 DOI: 10.1016/j.cryobiol.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Intracellular calcium homeostasis plays a crucial role in spermatozoa by regulating physiological functions associated with sperm quality and male fertility potential. Intracellular calcium fine balance in the sperm cytoplasm is strictly dependent on sperm surface channels including the CatSper channel. CatSpers' role is to ensure the influx of extracellular calcium, while intracellular pH alkalinization serves as a stimulus for the activation of several channels, including CatSper. Overall, the generation of intracellular calcium spikes through CatSper is essential for fertilization-related processes, such as sperm hyperactivation, acrosome reaction, egg chemotaxis, and zona pellucida penetration. Multiple lines of evidence suggest that disruption in the close interaction among ions, pH, and CatSper could impair male fertility potential. In contemporary times, the growing reliance on Medically Assisted Reproduction procedures underscores the impact of cryopreservation on gametes. In fact, a large body of literature raises concerns about the cryo-damages provoked by the freeze-thawing processes, that can affect the plasma membrane integrity, thus the structure of pivotal ion channels, and the fine regulation of both intracellular calcium and pH. This review aims to provide an overview of the importance of the CatSper channel in sperm quality and further fertilization potential. Additionally, it addresses the emerging issue of cryopreservation's impact on the functionality of this sperm channel.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| |
Collapse
|
10
|
Palomar A, Gonzalez-Martin R, Quiñonero A, Pellicer N, Fernandez-Saavedra R, Rucandio I, Fernandez-Martinez R, Conde-Vilda E, Quejido AJ, Zuckerman C, Whitehead C, Scott RT, Dominguez F. Bioaccumulation of Non-Essential Trace Elements Detected in Women's Follicular Fluid, Urine, and Plasma Is Associated with Poor Reproductive Outcomes following Single Euploid Embryo Transfer: A Pilot Study. Int J Mol Sci 2023; 24:13147. [PMID: 37685954 PMCID: PMC10487767 DOI: 10.3390/ijms241713147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to determine the association of non-essential trace elements present in follicular fluid, plasma, and urine with reproductive outcomes of women undergoing intracytoplasmic sperm injection (ICSI), preimplantation genetic testing for aneuploidies (PGT-A) and single frozen euploid embryo transfer (SET/FET). This single-center, prospective cohort study included sixty women undergoing ICSI with PGT-A and SET/FET between 2018 and 2019. Urine, plasma and follicular fluid samples were collected on the vaginal oocyte retrieval day to simultaneously quantify ten non-essential trace elements (i.e., Ba, Sr, Rb, Sn, Ti, Pb, Cd, Hg, Sb, and As). We found several associations between the levels of these non-essential trace elements and clinical IVF parameters. Specifically, the increased levels of barium in follicular fluid were negatively associated with ovarian function, pre-implantation development and embryo euploidy, while elevated strontium concentrations in this biofluid were negatively associated with impaired blastulation and embryo euploidy. Elevated plasma strontium levels were negatively associated with ovarian function, fertilization and blastulation. Enhanced presence of other trace elements in plasma (i.e., rubidium and arsenic) were associated with a diminished ovarian function and limited the number of recovered oocytes, mature oocytes and zygotes, respectively. Fully adjusted models suggested significantly lower odds of achieving a live birth when increased concentrations of barium and tin were found in urine.
Collapse
Affiliation(s)
- Andrea Palomar
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Roberto Gonzalez-Martin
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Alicia Quiñonero
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Nuria Pellicer
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Rocio Fernandez-Saavedra
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Isabel Rucandio
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Rodolfo Fernandez-Martinez
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Estefania Conde-Vilda
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Alberto J. Quejido
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Caroline Zuckerman
- Department of Clinical Research, IVIRMA Global Research Alliance IVI-RMA New Jersey, Basking Ridge, NJ 07920, USA; (C.Z.); (C.W.)
| | - Christine Whitehead
- Department of Clinical Research, IVIRMA Global Research Alliance IVI-RMA New Jersey, Basking Ridge, NJ 07920, USA; (C.Z.); (C.W.)
| | - Richard T. Scott
- Department of Clinical Research, IVIRMA Global Research Alliance IVI-RMA New Jersey, Basking Ridge, NJ 07920, USA; (C.Z.); (C.W.)
- Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Francisco Dominguez
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| |
Collapse
|
11
|
Bolton VN, Perez MJ, Hughes G, Moodley T, Dean M, Fernandez-Ponce A, Southall-Brown G, Kasraie J. The use of ICSI in ART: evidence for practice. HUM FERTIL 2023; 26:414-432. [PMID: 37609991 DOI: 10.1080/14647273.2023.2243071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This article reviews the evidence regarding the safety and efficacy of intra-cytoplasmic sperm injection (ICSI). It provides evidence-based clinical and laboratory guidelines and recommendations for use of ICSI within an assisted reproductive technology (ART) service. The guidelines address the evidence for the use of ICSI rather than conventional IVF (cIVF); the use of ART techniques supplementary to ICSI; and risks associated with ICSI. This article is not intended to be the only approved standard of practice or to dictate an exclusive course of treatment. Other plans of management may be appropriate, taking into account the needs and medical history of the patient, available resources, and institutional or clinical practice limitations.
Collapse
Affiliation(s)
| | | | - George Hughes
- Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | - Therishnee Moodley
- The Centre for Reproductive Medicine, St. Bartholomew's Hospital, London, UK
| | - Morven Dean
- Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | | | | | - Jason Kasraie
- University of Chester and University Centre Shrewsbury, Chester, UK
| |
Collapse
|
12
|
Hirose N, Kikuchi Y, Kageyama A, Sugita H, Sakurai M, Kawata Y, Terakawa J, Wakayama T, Ito J, Kashiwazaki N. Successful Production of Offspring Derived from Phospholipase C Zeta-Deficient Sperm by Additional Artificial Activation. Life (Basel) 2023; 13:life13040980. [PMID: 37109509 PMCID: PMC10143324 DOI: 10.3390/life13040980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized that sperm specific phospholipase C (PLCζ) is a strong candidate as the sperm factor which can induce calcium oscillations and, at least in mammals, the genetic mutation of PLCζ in human causes male infertility due to the lack of calcium oscillations in the oocytes. Recent studies showed that the sperm lacking PLCζ (Plcz1-/-) still could induce rise(s) of intracellular calcium in the oocytes after IVF but not intracytoplasmic sperm injection (ICSI). In the ICSI oocytes, no pronuclear formation or development to the two-cell stage was observed. However, it is still unclear whether additional activation treatment can rescue the low developmental ability of Plcz1-/--sperm-derived oocytes after ICSI. In this study, we examined whether oocytes injected with a Plcz1-/- sperm can develop to term by additional artificial activation. In oocytes injected a Plcz1-/- sperm and Plcz1-/- and eCS (another candidate of the sperm factor) double knockout sperm (Plcz1-/-eCS-/-), the rates of pronuclear formation were very low (2.0 ± 2.3% and 6.1 ± 3.7%, respectively) compared to control (92.1 ± 2.6%). However, these rates were dramatically improved by additional procedures of PLCζ-mRNA injection or SrCl2 treatment (Plcz1-/- sperm + PLCζ mRNA, Plcz1-/- sperm + SrCl2 and Plcz1-/-eCS-/- sperm + PLCζ mRNA; 64.2 ± 10.8%, 89.2 ± 2.4% and 72.6 ± 5.4%, respectively). Most of the oocytes were developed to the two-cell stage. After embryo transfer, healthy pups were obtained in all these groups (Plcz1-/- sperm + PLCζ mRNA:10.0 ± 2.8%, Plcz1-/- sperm + SrCl2:4.0 ± 4.3% and Plcz1-/-eCS-/- sperm + PLCζ mRNA: 10.0 ± 5.7%). The rate in Plcz1-/- sperm + SrCl2 group was significantly lower than that in control (26.0 ± 2.4%). Taken together, our present results show that additional activation treatment such as SrCl2 and PLCζ mRNA can fully support to develop to term even in oocyte injected Plcz1-/- sperm. In addition, PLCζ-induced oocyte activation is more suitable for successful development to term compared to that such as phenomenon induced by SrCl2. These findings will contribute to improvement for male-dependent human infertility and reproductive technologies in other mammalian species.
Collapse
Affiliation(s)
- Naoki Hirose
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Hibiki Sugita
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Miu Sakurai
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Yui Kawata
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Jumpei Terakawa
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Kanagawa 252-0206, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| |
Collapse
|
13
|
Liu Z, Guo Y, Chen X, Lin C, Guo X, Jiang M, Liu Q. The effect of ionomycin-induced oocyte activation on multiple morphological abnormalities of the sperm flagella. Syst Biol Reprod Med 2023; 69:245-254. [PMID: 36772853 DOI: 10.1080/19396368.2023.2167621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Artificial oocyte activation (AOA) is considered an effective method to improve clinical outcomes in patients with some forms of male factor infertility and does not increase the risk of birth defects. However, the effects of AOA on patients with multiple morphological abnormalities of the sperm flagella (MMAF) caused by a DNAH1 mutation are still unknown. To explore the effects, our study analyzed a case with MMAF due to DNAH1 homozygous mutation that underwent testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection (ICSI). The case had 28 MII oocytes. The 28 oocytes were divided randomly and equally into AOA and non-AOA groups. Ionomycin was used for AOA. We compared the clinical outcomes of two groups and selected three blastulation failure embryos from each group for transcriptome analysis (Data can be accessed through GSE216618). Differentially expressed genes (DEGs) were determined with an adjusted p-value <0.05 and a |log2-fold change| ≥1. The comparison of clinical outcomes showed that the two pronuclei (2PN) rate and grade 1-2 embryo rate at day 3 were not significantly different between the two groups. Transcriptome analyses of blastulation failed embryos showed that the use of AOA had potential risks of chromosome structure defects, transcriptional regulation defects, and epigenetic defects. In conclusion, when the case with MMAF due to DNAH1 mutation underwent TESE-ICSI, ionomycin-induced oocyte activation could not improve the clinical outcomes and introduced the risks of chromosome structure defect, transcriptional regulation defect, and epigenetic defect.
Collapse
Affiliation(s)
- Zhiren Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Yujia Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xingting Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Chen Lin
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xinxin Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Mingting Jiang
- Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
14
|
Chen X, Zhao H, Lv J, Dong Y, Zhao M, Sui X, Cui R, Liu B, Wu K. Calcium ionophore improves embryonic development and pregnancy outcomes in patients with previous developmental problems in ICSI cycles. BMC Pregnancy Childbirth 2022; 22:894. [PMID: 36460987 PMCID: PMC9717248 DOI: 10.1186/s12884-022-05228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Calcium (Ca2+) ionophores are now mainly considered as efficient treatments for fertilization failure. Recently, its application for rescuing poor embryo development was proposed but still non-routine. This study aimed to explore whether Ca2+ ionophore improves embryo development and pregnancy outcomes in patients with poor embryo development in previous intracytoplasmic sperm injection (ICSI) cycles. METHODS This study included 97 patients undergoing assisted oocyte activation (AOA) with Ca2+ ionophore (calcimycin, A23187) treatment. Preimplantation embryonic development and clinical outcomes were compared between ICSI-AOA cycles (AOA group) and previous ICSI cycles of the same patients in which poor embryo developmental potential was present (non-AOA group). Subgroups stratified by maternal age (< 35, 35-40, ≥ 40 years, respectively) were analyzed separately. RESULTS A total of 642 MII oocytes were collected in AOA group, and 689 in non-AOA group. Significantly higher day 3 good quality embryo rate (P = 0.034), good quality blastocyst formation rate (P < 0.001), and utilization rate (P < 0.001) were seen in AOA group. Similar results were seen in each subgroup. For pregnancy outcomes, there were significant differences in clinical pregnancy rate (P = 0.039) and live birth rate (P = 0.045) in total group. In subgroup aged < 35 years, biochemical (P = 0.038), clinical (P = 0.041), and ongoing pregnancy rate (P = 0.037) in AOA group were significantly higher than that in non-AOA group. No significant improvement for clinical outcomes for subgroups aged 35-40 and aged ≥40. CONCLUSION The study suggests that calcimycin could improve preimplantation development and pregnancy outcomes in patients aged < 35 years with embryo developmental problems in previous ICSI cycles.
Collapse
Affiliation(s)
- Xiaolei Chen
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Haibin Zhao
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Jiale Lv
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Yi Dong
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Maoning Zhao
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Xinlei Sui
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Ran Cui
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Boyang Liu
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Keliang Wu
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| |
Collapse
|
15
|
Wang H, Christenson LK, Kinsey WH. Changes in cortical endoplasmic reticulum clusters in the fertilized mouse oocyte†. Biol Reprod 2022; 107:1254-1263. [PMID: 36136741 PMCID: PMC9663941 DOI: 10.1093/biolre/ioac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022] Open
Abstract
Oocytes from many invertebrate and vertebrate species exhibit unique endoplasmic reticulum (ER) specializations (cortical ER clusters), which are thought to be essential for egg activation. In examination of cortical ER clusters, we observed that they were tethered to previously unreported fenestrae within the cortical actin layer. Furthermore, studies demonstrated that sperm preferentially bind to the plasma membrane overlying the fenestrae, establishing close proximity to underlying ER clusters. Moreover, following sperm-oocyte fusion, cortical ER clusters undergo a previously unrecognized global change in volume and shape that persists through sperm incorporation, before dispersing at the pronuclear stage. These changes did not occur in oocytes from females mated with Izumo1 -/- males. In addition to these global changes, highly localized ER modifications were noted at the sperm binding site as cortical ER clusters surround the sperm head during incorporation, then form a diffuse cloud surrounding the decondensing sperm nucleus. This study provides the first evidence that cortical ER clusters interact with the fertilizing sperm, indirectly through a previous unknown lattice work of actin fenestrae, and then directly during sperm incorporation. These observations raise the possibility that oocyte ER cluster-sperm interactions provide a competitive advantage to the oocyte, which may not occur during assisted reproductive technologies such as intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Huizhen Wang
- Department Cell Biology and Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Lane K Christenson
- Department Cell Biology and Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - William H Kinsey
- Department Cell Biology and Physiology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
16
|
Tsai TE, Lin PH, Lian PF, Li CJ, Vitale SG, Mikuš M, Su WP, Tsai HW, Tsui KH, Lin LT. Artificial oocyte activation may improve embryo quality in older patients with diminished ovarian reserve undergoing IVF-ICSI cycles. J Ovarian Res 2022; 15:102. [PMID: 36085215 PMCID: PMC9463812 DOI: 10.1186/s13048-022-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artificial oocyte activation (AOA) is used to improve fertilization rate following fertilization failure after intracytoplasmic sperm injection (ICSI). Several studies have also shown that AOA may be involved in embryo development. Women with poor ovarian response are more likely to encounter in vitro fertilization (IVF) failure due to poor embryo quality. The aim of this study was to investigate whether AOA could improve embryo quality in older patients with diminished ovarian reserve undergoing IVF-ICSI cycles. METHODS The retrospective cohort study consisted of 308 patients who fulfilled the POSEIDON Group 4 criteria and received IVF-ICSI cycles. The study group included 91 patients receiving AOA with calcium ionophores following ICSI. A total of 168 patients in the control group underwent ICSI without AOA. The baseline and cycle characteristics and embryo quality were compared between the two groups. RESULTS At baseline, there were more IVF attempts, greater primary infertility, higher basal FSH levels and lower anti-Müllerian hormone (AMH) levels in the AOA group than in the non-AOA group. In terms of embryo quality, there were higher cleavage rates and top-quality Day 3 embryo (TQE) rates, as well as higher percentages of more than 1 TQE and TQE rates ≥50 in the AOA group than in the non-AOA group. The multivariate analysis revealed that AOA was positively associated with more than 1 TQE (adjusted OR 3.24, 95% CI 1.63-6.45, P = 0.001) and a TQE rate ≥ 50 (adjusted OR 2.14, 95% CI 1.20-3.80, P = 0.010). When the study population was divided into 2 subgroups based on the age of 40 years old, the beneficial effects of AOA on embryo quality were only observed in the subgroup of age ≥ 40 years old. CONCLUSIONS Our data suggest that AOA with calcium ionophores may improve embryo quality in older patients with diminished ovarian reserve undergoing IVF-ICSI cycles, especially in women aged ≥40 years.
Collapse
Affiliation(s)
- Tzung-En Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan
| | - Pei-Hsuan Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan
| | - Pei-Fen Lian
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan.,Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124, Catania, Italy
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Wan-Ping Su
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan
| | - Hsiao-Wen Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan.,Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist, 81362, Kaohsiung City, Taiwan. .,Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan. .,Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei City, Taiwan. .,Department of Biological Science, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
17
|
Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. BIOLOGY 2022; 11:biology11071006. [PMID: 36101387 PMCID: PMC9312130 DOI: 10.3390/biology11071006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
Electrolyte balance is essential to maintain homeostasis in the body. The most crucial electrolytes are sodium (Na+), potassium (K+), magnesium (Mg2+), chloride (Cl−), and calcium (Ca2+). These ions maintain the volume of body fluids, and blood pressure, participate in muscle contractions, and nerve conduction, and are important in enzymatic reactions. The balance is mainly ensured by the kidneys, which are an important organ that regulates the volume and composition of urine, together with which excess electrolytes are excreted. They are also important in the reproductive system, where they play a key role. In the male reproductive system, electrolytes are important in acrosomal reaction and sperm motility. Sodium, calcium, magnesium, and chloride are related to sperm capacitation. Moreover, Mg2+, Ca2+, and Na+ play a key role in spermatogenesis and the maintenance of morphologically normal spermatozoa. Infertility problems are becoming more common. It is known that disturbances in the electrolyte balance lead to reproductive dysfunction. In men, there is a decrease in sperm motility, loss of sperm capacitation, and male infertility. In the female reproductive system, sodium is associated with estrogen synthesis. In the contraction and relaxation of the uterus, there is sodium, potassium, and calcium. Calcium is associated with oocyte activation. In turn, in women, changes in the composition of the follicular fluid are observed, leading to a restriction of follicular growth. Imbalance of oocyte electrolytes, resulting in a lack of oocyte activation and, consequently, infertility.
Collapse
|
18
|
Enoiu SI, Nygaard MB, Bungum M, Ziebe S, Petersen MR, Almstrup K. Expression of membrane fusion proteins in spermatozoa and total fertilisation failure during in vitro fertilisation. Andrology 2022; 10:1317-1327. [PMID: 35727923 PMCID: PMC9540887 DOI: 10.1111/andr.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Background Couples increasingly experience infertility and seek help from assisted reproductive techniques to become pregnant. However, 5%–15% of the couples that are selected for in vitro fertilisation (IVF) experience a total fertilisation failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. We hypothesise that TFF during IVF could be related to improper membrane fusion of gametes. Objective To investigate the membrane integrity and fusion proteins in spermatozoa from men in couples experiencing TFF. Materials and methods A total of 33 infertile couples, 17 of which experienced TFF during IVF and 16 matched control couples with normal IVF fertilisation rates, were selected and the men re‐called to deliver an additional semen sample. Proteins involved in gamete membrane fusion on spermatozoa (IZUMO1, SPESP1 and Syncytin‐1) as well as O‐glycosylation patterns (Tn and GALNT3), were investigated by immunofluorescence. The DNA fragmentation index, acrosomal integrity and viability of spermatozoa were determined by flow and image cytometry. Results No significant changes in the expression of GALNT3, Tn and Syncytin‐1 were observed between the TFF and control groups. The fraction of spermatozoa expressing SPESP1, the median IZUMO1 staining intensity, and the percentage of viable acrosome‐intact spermatozoa were significantly lower in the TFF group compared to controls. Furthermore, following progesterone‐induced acrosomal exocytosis, a significant difference in the fraction of spermatozoa expressing SPESP1 and the median IZUMO1 staining intensity were observed between the control and TFF group. Discussion and conclusion Our results indicate that acrosomal exocytosis, IZUMO1 and SPESP1 expression in spermatozoa could play a crucial role in achieving fertilisation during IVF. However, the size of our cohort was quite small, and our results need to be validated with quantitative methods in larger cohorts.
Collapse
Affiliation(s)
- Simona Ioana Enoiu
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Marie Berg Nygaard
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Mona Bungum
- Reproductive Medicine Centre, Skåne University Hospital, Malmo, Sweden
| | - Søren Ziebe
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Morten R Petersen
- The Fertility Clinic, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, DK-2100, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Esbert M, Carmody A, Ballesteros A, Seli E, Scott RT. Calcium Ionophore A23187 treatment to rescue unfertilized oocytes: a prospective randomized analysis of sibling oocytes. Reprod Biomed Online 2022; 45:878-883. [DOI: 10.1016/j.rbmo.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
|
20
|
Tao Y. Oocyte Activation during Round Spermatid Injection: State of the Art. Reprod Biomed Online 2022; 45:211-218. [DOI: 10.1016/j.rbmo.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
|
21
|
Attia A, Nicholson C, Martins da Silva SJ. Artificial Egg Activation Using Calcium Ionophore. Semin Reprod Med 2022; 39:e5-e11. [PMID: 35272388 DOI: 10.1055/s-0041-1742171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Artificial oocyte activation, most commonly using calcium ionophore, is a treatment add-on utilized to avoid recurrence of abnormally low or total failed fertilization following in vitro fertilization/intracytoplasmic sperm injection. It aims to modify defective physiological processes, specifically calcium-mediated cell signaling that are critical to events required for fertilization. Routine application of artificial oocyte activation is neither required nor recommended; however, it represents an invaluable intervention for a subgroup of patients affected by sperm-related oocyte activation deficiency.
Collapse
Affiliation(s)
- Ahmed Attia
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Cara Nicholson
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Sarah J Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
22
|
Calcium chloride dihydrate supplementation at ICSI improves fertilization and pregnancy rates in patients with previous low fertilization: a retrospective paired treatment cycle study. J Assist Reprod Genet 2022; 39:1055-1064. [PMID: 35262809 PMCID: PMC9107552 DOI: 10.1007/s10815-022-02407-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To determine if 5mM calcium chloride dihydrate supplementation of the Polyvinylpyrrolidone (PVP) media at the time of ICSI (ICSI-Ca) improves fertilization, utilization, and clinical pregnancy rates compared to ICSI alone, particularly in patients with a history of low fertilization (< 50%). METHODS Retrospective study between 2016 and 2021 at Monash IVF Victoria on a paired cohort of patients (n = 178 patients) where an ICSI cycle was analyzed coupled with the subsequent ICSI-Ca cycle. The paired cohort was further subdivided into a low-fertilization cohort (< 50% fertilization on previous cycles: n = 66 patients) compared to the remaining patients with fertilization ≥ 50% (n = 122). Exclusion criteria included donor cycles, PGT patients, surgical sperm retrieval, women ≥ 45 years old, patients with > 6 cycles, and patients with ≤ 5 inseminated oocytes. RESULTS Calcium supplementation significantly increased both fertilization (28.8% ICSI vs 49.7% ICSI-Ca, P < 0.0001) and clinical pregnancy rate (4.9% ICSI vs 25.0% ICSI-Ca: P < 0.05) in the low-fertilization cohort but not in the normal-fertilization cohort. Interestingly, utilization rate significantly increased in the normal-fertilization cohort (32.6% ICSI vs ICSI-Ca: 44.9%, P < 0.01) but not in the low-fertilization cohort, although the number of embryos utilized per patient after ICSI-Ca increased in both groups. CONCLUSION Calcium supplementation does not appear to be a detrimental addition to ICSI and may improve IVF outcomes, particularly for patients with a history of low fertilization. Further investigations including prospective case-matched studies or a RCT are required to confirm these findings.
Collapse
|
23
|
Liang R, Fang F, Li S, Chen X, Zhang X, Lu Q. Is there any effect on imprinted genes H19, PEG3, and SNRPN during AOA? Open Med (Wars) 2022; 17:174-184. [PMID: 35071778 PMCID: PMC8760930 DOI: 10.1515/med-2022-0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/19/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Assisted oocyte activation (AOA) has been proposed as an effective technique to overcome the problem of impaired fertilization after intracytoplasmic sperm injection (ICSI) but the safety of AOA remains a concern. We aimed to investigate if AOA induces imprinting effects on embryos. We used 13 cleavage embryos, nine blastocysts, and eight placentas from 15 patients. The subjects were divided into six groups by tissue type and with or without AOA. The methylation levels of imprinted genes (H19, paternally expressed gene [PEG3] and small nuclear ribonucleoprotein polypeptide N [SNRPN]) were tested by pyrosequencing. We observed different methylation levels among cleavage embryos. The variability was much more remarkable between cleavage embryos than blastocysts and placenta tissues. The methylation levels were especially higher in SNRPN and lower in the H19 gene in AOA embryos than those without AOA. No significant difference was found either among blastocysts or among placenta tissues regardless of AOA. The methylation levels of the three genes in blastocysts were very similar to those in the placenta. Compared to conventional ICSI, AOA changed imprinting methylation rates at H19 and SNRPN in cleavage embryos but not in the blastocyst stage and placenta. We recommend that blastocyst transfer should be considered for patients undergoing AOA during in vitro fertilization.
Collapse
Affiliation(s)
- Rong Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Fang Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Sen Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Guangdong Province , Guangzhou , 510317 , China
| | - Xi Chen
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| | - Qun Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University People’s Hospital , Beijing , 100044 , China
| |
Collapse
|
24
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
25
|
Kageyama A, Suyama A, Kinoshita R, Ito J, Kashiwazaki N. Dynamic changes of intracellular zinc ion level during maturation, fertilization, activation, and development in mouse oocytes. Anim Sci J 2022; 93:e13759. [PMID: 35880318 DOI: 10.1111/asj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Although it is well known that calcium oscillations are required for fertilization in all mammalian species studied to date, recent studies also showed the ejection of zinc into the extracellular milieu in a series of coordinated events, called "zinc spark," during mammalian fertilization. These results led us to the hypothesis that a zinc ion-dependent signal is important for oocyte maturation, fertilization (activation), and further embryonic development. In this study, we evaluated the amounts and localization of intracellular zinc ions during maturation, fertilization, activation, and embryonic development in mouse oocytes. Our results show that abundant zinc ions are present in both immature and mature oocytes. After in vitro fertilization, the amounts of zinc ions were dramatically decreased at the pronuclear (PN) stage. Artificial activation by cycloheximide, SrCl2 , and TPEN also reduced the amounts of zinc ions in the PN stage. On the other hand, PN embryos derived from sperm injection still showed high level of zinc ions. However, the amounts of zinc ions rapidly increased at the blastocysts regardless of activation method. We showed here that the amounts of zinc ions dramatically changed during maturation, fertilization, activation, and development in mouse oocytes.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ayumi Suyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ruka Kinoshita
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
26
|
Chen C, Sun T, Yin M, Yan Z, Yu W, Long H, Wang L, Liao X, Yan Z, Li W, Lyu Q. Ionomycin-induced mouse oocyte activation can disrupt preimplantation embryo development through increased reactive oxygen species reaction and DNA damage. Mol Hum Reprod 2021; 26:773-783. [PMID: 32697831 DOI: 10.1093/molehr/gaaa056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
Oocyte activation induced by calcium oscillations is an important process in normal fertilization and subsequent embryogenesis. In the clinical-assisted reproduction, artificial oocyte activation (AOA) is an effective method to improve the clinical outcome of patients with null or low fertilization rate after ICSI. However, little is known about the effect of AOA on preimplantation embryo development in cases with normal fertilization by ICSI. Here, we used ionomycin at different concentrations to activate oocytes after ICSI with normal sperm and evaluated energy metabolism and preimplantation embryo development. We found that a high concentration of ionomycin increased the frequency and amplitude of calcium oscillation patterns, affecting the balance of mitochondrial energy metabolism, leading to increased reactive oxygen species (ROS) and decreased ATP. Eventually, it increases DNA damage and decreases blastocyst formation. In addition, the addition of vitamin C to the culture medium ameliorated the increase in ROS and DNA damage and rescued the abnormal embryo development caused by excessive ionomycin activation. This study provides a perspective that the improper application of AOA may have adverse effects on preimplantation embryo development. Thus, clinical AOA treatment should be cautiously administered.
Collapse
Affiliation(s)
- Chen Chen
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tingye Sun
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Department of Gynaecology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiguang Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weina Yu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Long
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyu Liao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Kamath MS, Vogiatzi P, Sunkara SK, Woodward B. Oocyte activation for women following intracytoplasmic sperm injection (ICSI). Hippokratia 2021. [DOI: 10.1002/14651858.cd014040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohan S Kamath
- Department of Reproductive Medicine; Christian Medical College; Vellore India
| | - Paraskevi Vogiatzi
- Fertility Diagnostics Laboratory; Andromed Health and Reproduction; Athens Greece
| | - Sesh Kamal Sunkara
- Division of Women's Health, Faculty of Life Sciences & Medicine; King's College London; London UK
| | | |
Collapse
|
28
|
Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, Qiao J. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod 2021; 35:977-985. [PMID: 32142120 DOI: 10.1093/humrep/dez293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Is a novel homozygous phospholipase C zeta (PLCζ), c.1658 G>C; p. R553P mutation in the C2 domain associated with the outcomes of recurrent fertilization failure after ICSI? SUMMARY ANSWER PLCζ, c.1658 G>C led to defective human oocyte activation and fertilization failure, while this mutation in the C2 domain of PLCζ did not compromise concentration, motility and chromosome ploidy of sperm. WHAT IS KNOWN ALREADY Sperm-specific PLCζ is now widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations, which are essential for egg activation during mammalian fertilization. Thus far, few genetic studies have shown that different point mutations in the PLCζ gene are associated with male infertility. STUDY DESIGN, SIZE, DURATION This was a basic medical research to assess pathogenicity for novel mutation in the C2 domain of PLCζ during human fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell omics were applied to analyze the DNA methylation state of the fertilization failure oocytes and the ploidy of the patient's sperm. Whole genome sequencing data for the patient were analyzed for mutations in PLCζ. Sanger sequencing confirmed the presence of a rare variant, and then the mutant and wild-type PLCζ mRNA were injected to observe oocyte activation. MAIN RESULTS AND THE ROLE OF CHANCE The fertilization failure oocytes (n = 4) were triploid and lacking proper DNA demethylation. The whole genome sequencing analysis revealed a novel missense homozygous mutation in PLCζ, c.1658 G>C; p. R553P, which leads to the conversion of arginine 553 to proline. This point mutation does not affect the production of the corresponding protein in sperm. However, microinjection of the mRNA transcribed from the PLCζ R553P mutation gene failed to trigger oocyte activation and the subsequent embryo development. LIMITATIONS, REASONS FOR CAUTION Only one patient with PLCζ mutations was available because of its rare incidence. WIDER IMPLICATIONS OF THE FINDINGS Notably, we discovered a novel homozygous mutation in PLCζ, which results in an abnormal conformation at the C2 domain of the PLCζ protein. Our findings indicate an essential role of PLCζ in human fertilization and the requirement of a normal structure of C2 domain in PLCζ-mediated physiological function. STUDY FUNDING/COMPETING INTEREST(S) This project is funded by the National Natural Science Foundation of China (31571544, 31871482, 31871447) and National Key Research and Development Program (2018YFC1004000, 2017YFA0103801). All authors declared no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Cen Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Zafar MI, Lu S, Li H. Sperm-oocyte interplay: an overview of spermatozoon's role in oocyte activation and current perspectives in diagnosis and fertility treatment. Cell Biosci 2021; 11:4. [PMID: 33407934 PMCID: PMC7789549 DOI: 10.1186/s13578-020-00520-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
The fertilizing spermatozoon is a highly specialized cell that selects from millions along the female tract until the oocyte. The paternal components influence the oocyte activation during fertilization and are fundamental for normal embryo development; however, the sperm-oocyte interplay is in a continuous debate. This review aims to analyze the available scientific information related to the role of the male gamete in the oocyte activation during fertilization, the process of the interaction of sperm factors with oocyte machinery, and the implications of any alterations in this interplay, as well as the advances and limitations of the reproductive techniques and diagnostic tests. At present, both PLCζ and PAWP are the main candidates as oocyte activated factors during fertilization. While PLCζ mechanism is via IP3, how PAWP activates the oocyte still no clear, and these findings are important to study and treat fertilization failure due to oocyte activation, especially when one of the causes is the deficiency of PLCζ in the sperm. However, no diagnostic test has been developed to establish the amount of PLCζ, the protocol to treat this type of pathologies is broad, including treatment with ionophores, sperm selection improvement, and microinjection with PLCζ protein or RNA.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, People's Republic of China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jeifang Avenue, Wuhan, 430022, People's Republic of China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, People's Republic of China. .,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan, 430013, People's Republic of China.
| |
Collapse
|
30
|
Oocyte activation, oolemma piercing, and real-time viability confirmation in human oocytes using electrophysiological techniques. Curr Opin Obstet Gynecol 2020; 32:191-197. [PMID: 32175922 DOI: 10.1097/gco.0000000000000625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To discuss the recent applications of electrophysiological principles to the optimization and automation of the IVF laboratory. RECENT FINDINGS There is growing evidence showing improvement of live birth rates following oocyte electro-activation. Novel applications using electrophysiological techniques are now employed to determine oocyte penetration and viability in real-time. SUMMARY In this short review, we summarize the recent advances in the integration of electrophysiological techniques into the assisted reproductive technology laboratories. We describe the potential clinical applications and their advantages such as creation of reliable automated cell injection systems and novel manual intracytoplasmic sperm injection (ICSI) training platforms. We also discuss theoretical adverse effects and ways to mitigate them.
Collapse
|
31
|
Armstrong S, Atkinson M, MacKenzie J, Pacey A, Farquhar C. Add-ons in the laboratory: hopeful, but not always helpful. Fertil Steril 2019; 112:994-999. [DOI: 10.1016/j.fertnstert.2019.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
|