1
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
2
|
Schardt JS, Jhajj HS, O’Meara RL, Lwo TS, Smith MD, Tessier PM. Agonist antibody discovery: Experimental, computational, and rational engineering approaches. Drug Discov Today 2022; 27:31-48. [PMID: 34571277 PMCID: PMC8714685 DOI: 10.1016/j.drudis.2021.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Agonist antibodies that activate cellular signaling have emerged as promising therapeutics for treating myriad pathologies. Unfortunately, the discovery of rare antibodies with the desired agonist functions is a major bottleneck during drug development. Nevertheless, there has been important recent progress in discovering and optimizing agonist antibodies against a variety of therapeutic targets that are activated by diverse signaling mechanisms. Herein, we review emerging high-throughput experimental and computational methods for agonist antibody discovery as well as rational molecular engineering methods for optimizing their agonist activity.
Collapse
Affiliation(s)
- John S. Schardt
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L. O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew D. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Wang BT, Kothambawala T, Wang L, Matthew TJ, Calhoun SE, Saini AK, Kotturi MF, Hernandez G, Humke EW, Peterson MS, Sinclair AM, Keyt BA. Multimeric Anti-DR5 IgM Agonist Antibody IGM-8444 Is a Potent Inducer of Cancer Cell Apoptosis and Synergizes with Chemotherapy and BCL-2 Inhibitor ABT-199. Mol Cancer Ther 2021; 20:2483-2494. [PMID: 34711645 PMCID: PMC9398157 DOI: 10.1158/1535-7163.mct-20-1132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
Death receptor 5 (DR5) is an attractive target for cancer therapy due to its broad upregulated expression in multiple cancers and ability to directly induce apoptosis. Though anti-DR5 IgG antibodies have been evaluated in clinical trials, limited efficacy has been attributed to insufficient receptor crosslinking. IGM-8444 is an engineered, multivalent agonistic IgM antibody with 10 binding sites to DR5 that induces cancer cell apoptosis through efficient DR5 multimerization. IGM-8444 bound to DR5 with high avidity and was substantially more potent than an IgG with the same binding domains. IGM-8444 induced cytotoxicity in a broad panel of solid and hematologic cancer cell lines but did not kill primary human hepatocytes in vitro, a potential toxicity of DR5 agonists. In multiple xenograft tumor models, IGM-8444 monotherapy inhibited tumor growth, with strong and sustained tumor regression observed in a gastric PDX model. When combined with chemotherapy or the BCL-2 inhibitor ABT-199, IGM-8444 exhibited synergistic in vitro tumor cytotoxicity and enhanced in vivo efficacy, without augmenting in vitro hepatotoxicity. These results support the clinical development of IGM-8444 in solid and hematologic malignancies as a monotherapy and in combination with chemotherapy or BCL-2 inhibition.
Collapse
Affiliation(s)
| | | | - Ling Wang
- IGM Biosciences Inc., Mountain View, California
| | | | | | | | | | | | | | | | | | - Bruce A Keyt
- IGM Biosciences Inc., Mountain View, California.
| |
Collapse
|