1
|
Krochmal AR, Roth TC. The case for investigating the cognitive map in nonavian reptiles. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
|
3
|
Krochmal AR, Roth TC, Simmons NT. The geomagnetic field does not appear to influence navigation in Eastern painted turtles. Ethology 2020. [DOI: 10.1111/eth.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Timothy C. Roth
- Department of Psychology Franklin and Marshall College Lancaster Pennsylvania
| | - Nathaniel T. Simmons
- Department of Biology Washington College Chestertown Maryland
- Still Pond Chestertown, Maryland
| |
Collapse
|
4
|
Roth TC, Rosier M, Krochmal AR, Clark L. A multi‐trait, field‐based examination of personality in a semi‐aquatic turtle. Ethology 2020. [DOI: 10.1111/eth.13030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Timothy C. Roth
- Department of Psychology Franklin and Marshall College Lancaster PA USA
| | - Maxwell Rosier
- Department of Psychology Franklin and Marshall College Lancaster PA USA
- 18 Rose Lane PA USA
| | | | - Lisa Clark
- Department of Psychology Franklin and Marshall College Lancaster PA USA
| |
Collapse
|
5
|
Billings BK, Behroozi M, Helluy X, Bhagwandin A, Manger PR, Güntürkün O, Ströckens F. A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct Funct 2020; 225:683-703. [PMID: 32009190 DOI: 10.1007/s00429-020-02028-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The phylogenetic position of crocodilians in relation to birds and mammals makes them an interesting animal model for investigating the evolution of the nervous system in amniote vertebrates. A few neuroanatomical atlases are available for reptiles, but with a growing interest in these animals within the comparative neurosciences, a need for these anatomical reference templates is becoming apparent. With the advent of MRI being used more frequently in comparative neuroscience, the aim of this study was to create a three-dimensional MRI-based atlas of the Nile crocodile (Crocodylus niloticus) brain to provide a common reference template for the interpretation of the crocodilian, and more broadly reptilian, brain. Ex vivo MRI acquisitions in combination with histological data were used to delineate crocodilian brain areas at telencephalic, diencephalic, mesencephalic, and rhombencephalic levels. A total of 50 anatomical structures were successfully identified and outlined to create a 3-D model of the Nile crocodile brain. The majority of structures were more readily discerned within the forebrain of the crocodile with the methods used to produce this atlas. The anatomy outlined herein corresponds with both classical and recent crocodilian anatomical analyses, barring a few areas of contention predominantly related to a lack of functional data and conflicting nomenclature.
Collapse
Affiliation(s)
- Brendon K Billings
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mehdi Behroozi
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Xavier Helluy
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.,Faculty of Health Sciences, Department of Human Biology, Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Onur Güntürkün
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Felix Ströckens
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Roth TC, Krochmal AR. Of molecules, memories and migration: M1 acetylcholine receptors facilitate spatial memory formation and recall during migratory navigation. Proc Biol Sci 2018; 285:rspb.2018.1904. [PMID: 30429306 PMCID: PMC6253372 DOI: 10.1098/rspb.2018.1904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/24/2018] [Indexed: 02/03/2023] Open
Abstract
Many animals use complex cognitive processes, including the formation and recall of memories, for successful navigation. However, the developmental and neurological processes underlying these cognitive aspects of navigation are poorly understood. To address the importance of the formation and recollection of memories during navigation, we pharmacologically manipulated turtles (Chrysemys picta) that navigate long distances using precise, complex paths learned during a juvenile critical period. We treated freely navigating turtles both within and outside of their critical learning period with a specific M1 acetylcholine receptor antagonist, a drug known to disrupt spatial cognition. Experienced adult turtles lost all navigational ability under the influence of the drug, while naive juveniles navigated successfully. We retested these same juveniles the following year (after they had passed their critical period). The juveniles that initially navigated successfully under the influence of the antagonist (but were unable to form spatial memories) were unable to do so subsequently. However, the control animals (who had the opportunity to form memories previously) exhibited typical navigational precision. These results suggest that the formation of spatial memories for navigation occur during a critical period, and successful navigation after the critical period is dependent upon the recall of such memories.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD 21620, USA
| |
Collapse
|
7
|
Krenz JD, Congdon JD, Schlenner MA, Pappas MJ, Brecke BJ. Use of sun compass orientation during natal dispersal in Blanding’s turtles: in situ field experiments with clock-shifting and disruption of magnetoreception. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2590-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Abstract
Expanding human populations favors a few species while extinguishing and endangering many others (Maxwell et al., 2016; Pimm et al., 2014). Understanding how animals perceive and learn about dangers and rewards can aid conservationists seeking to limit abundant or restore rare species (Schakner and Blumstein, 2016; Greggor et al., 2014; Angeloni et al., 2008; Fernández-Juricic and Schulte, 2016). Cognition research is informing conservation science by suggesting how naïve prey learn novel predators (Griffin et al., 2000; Moseby et al., 2015; Schakner et al., 2016; Blumstein, 2016), the mechanisms underlying variation in tolerance of human disturbance (Bostwick et al., 2014), and when natural aversions and fear learning can be leveraged to humanely control predators (Nielsen et al., 2015; Colman et al., 2014; Norbury et al., 2014; Lance et al., 2010; Cross et al., 2013). Insights into the relationships between cognition and adaptability suggest that behavioral inflexibility often presages species rarity (Amiel et al., 2011; Reif et al., 2011; Sol et al., 2008; Zhang et al., 2014; but see Kellert, 1984). Human compassion and restraint are ultimately required to conserve species. Cognitive science can therefore further inform conservation by revealing the complex inner worlds of the animals we threaten and, in partnership with environmental psychologists, explore how such newfound knowledge affects our empathy for other species and ultimately the public's actions on behalf of species in need of conservation (Collado et al., 2013; Zhang et al., 2014).
Collapse
|
9
|
Krochmal AR, Roth TC, O'Malley H. An empirical test of the role of learning in translocation. Anim Conserv 2017. [DOI: 10.1111/acv.12357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. R. Krochmal
- Department of Biology; Washington College; Chestertown MD USA
| | - T. C. Roth
- Department of Psychology; Franklin and Marshall College; Lancaster PA USA
| | - H. O'Malley
- Education Coordinator; Disney's Animals; Science and Environment; Lake Buena Vista FL USA
| |
Collapse
|
10
|
Roth TC, Krochmal AR. Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation. Proc Biol Sci 2017; 283:rspb.2015.2548. [PMID: 26865305 DOI: 10.1098/rspb.2015.2548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to learn about the spatial environment plays an important role in navigation, migration, dispersal, and foraging. However, our understanding of both the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited. We tested the hypothesis that complex navigation is facilitated by spatial memory in a population of Chrysemys picta that navigate with extreme precision (±3.5 m) using specific routes that must be learned prior to age three. We used scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate the cognitive spatial abilities of free-living turtles during naturally occurring overland movements. Experienced adults treated with scopolamine diverted markedly from their precise navigation routes. Naive juveniles lacking experience (and memory) were not affected by scopolamine, and thereby served as controls for perceptual or non-spatial cognitive processes associated with navigation. Further, neither adult nor juvenile movement was affected by methylscopolamine, a form of scopolamine that does not cross the blood-brain barrier, a control for the peripheral effects of scopolamine. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight a cellular mechanism that might underlie spatial cognition. Overall, our findings expand our understanding of the development of complex cognitive abilities of vertebrates and the neurological mechanisms of navigation.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Ave., Chestertown, MD 21620, USA
| |
Collapse
|
11
|
Roth TC, Krochmal AR, Gerwig WB, Rush S, Simmons NT, Sullivan JD, Wachter K. Using Pharmacological Manipulation and High-precision Radio Telemetry to Study the Spatial Cognition in Free-ranging Animals. J Vis Exp 2016. [PMID: 27842346 DOI: 10.3791/54790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
An animal's ability to perceive and learn about its environment plays a key role in many behavioral processes, including navigation, migration, dispersal and foraging. However, the understanding of the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited by the methodological difficulties involved in monitoring, manipulating the cognition of, and tracking wild animals. This study describes a protocol for addressing the role of cognition in navigation that combines pharmacological manipulation of behavior with high-precision radio telemetry. The approach uses scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate cognitive spatial abilities. Treated animals are then monitored with high frequency and high spatial resolution via remote triangulation. This protocol was applied within a population of Eastern painted turtles (Chrysemys picta) that has inhabited seasonally ephemeral water sources for ~100 years, moving between far-off sources using precise (± 3.5 m), complex (i.e., non-linear with high tortuosity that traverse multiple habitats), and predictable routes learned before 4 years of age. This study showed that the processes used by these turtles are consistent with spatial memory formation and recall. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight the integration of ecological and pharmacological techniques in the study of cognition and navigation.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College;
| | | | | | | | | | | | | |
Collapse
|
12
|
Manshack LK, Conard CM, Johnson SA, Alex JM, Bryan SJ, Deem SL, Holliday DK, Ellersieck MR, Rosenfeld CS. Effects of developmental exposure to bisphenol A and ethinyl estradiol on spatial navigational learning and memory in painted turtles (Chrysemys picta). Horm Behav 2016; 85:48-55. [PMID: 27476434 DOI: 10.1016/j.yhbeh.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/13/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26⁰C (male-inducing temperature) were treated with 1) BPA High (100μg /mL), 2) BPA Low (0.01μg/mL), 3) EE2 (0.2μg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles.
Collapse
Affiliation(s)
- Lindsey K Manshack
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline M Conard
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sarah A Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jorden M Alex
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sara J Bryan
- Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - Sharon L Deem
- Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA; Saint Louis Zoo Institute for Conservation Medicine, St. Louis, MO 63110, USA
| | - Dawn K Holliday
- Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biology and Environmental Sciences, Westminster College, Fulton, MO 65251, USA
| | - Mark R Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|