1
|
Yang Y, Zhang C, Lu H, Wu Q, Wu Y, Li W, Li X. Improvement of thermostability and catalytic efficiency of xylanase from Myceliophthora thermophilar by N-terminal and C-terminal truncation. Front Microbiol 2024; 15:1385329. [PMID: 38659990 PMCID: PMC11039872 DOI: 10.3389/fmicb.2024.1385329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Extracting xylanase from thermophilic filamentous fungi is a feasible way to obtain xylanase with good thermal stability. Methods The transcriptomic data of Myceliophthora thermophilic destructive ATCC42464 were differentially expressed and enriched. By comparing the sequences of Mtxylan2 and more than 10 xylanases, the N-terminal and C-terminal of Mtxylan2 were truncated, and three mutants 28N, 28C and 28NC were constructed. Results and discussion GH11 xylan Mtxylan2 was identified by transcriptomic analysis, the specific enzyme activity of Mtxylan2 was 104.67 U/mg, and the optimal temperature was 65°C. Molecular modification of Mtxylan2 showed that the catalytic activity of the mutants was enhanced. Among them, the catalytic activity of 28C was increased by 9.3 times, the optimal temperature was increased by 5°C, and the residual enzyme activity remained above 80% after 30 min at 50-65°C, indicating that redundant C-terminal truncation can improve the thermal stability and catalytic performance of GH11 xylanase.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - QiuHua Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
2
|
Sosa-Martínez JD, Montañez J, Contreras-Esquivel JC, Balagurusamy N, Gadi SK, Morales-Oyervides L. Agroindustrial and food processing residues valorization for solid-state fermentation processes: A case for optimizing the co-production of hydrolytic enzymes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119067. [PMID: 37778074 DOI: 10.1016/j.jenvman.2023.119067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
In the pursuit of sustainability, managing agro-industrial and food processing residues (AFR) efficiently is crucial. This study proposes a systematic approach to convert AFR into valuable products via solid-state fermentation (SSF). Using fungal enzyme production as a case study, this adaptable methodology suits any SSF bioprocess. Initially, AFR's physicochemical properties were evaluated to assess their feasible use as carbon sources and solid matrices for SSF. Then, five strains were screened for their capability to produce enzymes (Xylanase, X; pectinase, P; cellulase, C). Apple pomace (AP) and brewery spent grain (BSG) with Aspergillus sp. (strain G5) were selected. Subsequent steps involved a two-phase statistical approach, identifying critical factors and optimizing them. Process conditions were screened using a Plackett-Burman design, narrowing critical variables to three (BSG/AP, pH, humidity). Response Surface Methodology (Central Composite Design) further optimized these factors for co-synthesis of X, P, and C. The humidity had the most significant effect on the three responses. The optimum conditions depended on each enzyme and were further validated to maximize either X, P or C. The obtained extracts were used for pectin extraction from orange peels. The extract containing primarily xylanase (X = 582.39, P = 22.86, C = 26.10 U mL-1) showed major pectin yield recovery (12.33 ± 0.53%) and it was obtained using the optimal settings of BSG/AP (81/19), humidity (50.40%), and pH (4.58). The findings will enable adjusting process conditions to obtain enzymatic cocktails with a tailored composition for specific applications.
Collapse
Affiliation(s)
- Jazel Doménica Sosa-Martínez
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, 25280, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, 25280, Mexico
| | | | - Nagamani Balagurusamy
- Facultad de Ciencias Biológicas. Universidad Autonoma de Coahuila, Unidad Torreón, Torreón, Coahuila, 27000, Mexico
| | - Suresh Kumar Gadi
- Facultad de Ingeniería Mecánica y Eléctrica. Universidad Autonoma de Coahuila, Unidad Torreón, Torreón, Coahuila, 27276, Mexico
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
3
|
Kaur D, Joshi A, Sharma V, Batra N, Sharma AK. An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review. Biotechnol Appl Biochem 2023; 70:1489-1503. [PMID: 37186103 DOI: 10.1002/bab.2469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Endo 1,4-β-d-xylanases (EC3.2.1.8) are one of the key lignocellulose hydrolyzing enzymes. Xylan, which is present in copious amounts on earth, forms the primary substrate of endo-xylanases, which can unchain the constituent monosaccharides linked via β-1,4-glycosidic bonds from the xylan backbone. Researchers have shown keen interest in the xylanases belonging to glycoside hydrolase families 10 and 11, whereas those placed in other glycoside hydrolase families are yet to be investigated. Various microbes such as bacteria and fungi harbor these enzymes for the metabolism of their lignocellulose fibers. These microbes can be used as miniature biofactories of xylanase enzymes for a plethora of environmentally benign applications in pulp and paper industry, biofuel production, and for improving the quality of food in bread baking and fruit juice industry. This review highlights the potential of microbes in production of xylanase for industrial biotechnology.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, GGDSD College, Chandigarh, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
4
|
Pushparaj K, Meyyazhagan A, Bhotla HK, Arumugam VA, Pappuswamy M, Vadivalagan C, Hakeem KR, Balasubramanian B, Liu W, Mousavi Khaneghah A. The crux of bioactive metabolites in endophytic and thermophilic fungi and their proximal prospects in biotechnological and industrial domains. Toxicon 2023; 223:107007. [PMID: 36563862 DOI: 10.1016/j.toxicon.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fungi are ubiquitous in distribution and are found in grasses to hot springs. Their mode of nutrition provides sustenance for living and propagation. Ironically, varied fungal species have developed customized strategies for protection and survival by producing diverse secondary metabolites. The review aimed to project the contrasting potential features of the endophytic and thermophilic fungi groups. The metabolites and the enzymes of endophytic and thermophilic fungi served as the backbone to thrive and adapt within-host and in extreme conditions like higher pH, heat, and salinity, respectively. Identification, knowledge of their biochemistry and pathway, exploration, production, and utilization of these bioactive molecules in various commercial, industrial, and pharmaceutical domains were briefly discussed. The uniqueness of endophytes includes stress management and improved biomass production of the host, green fuel production, omnipresence, selected triple-symbiosis with the virus, synthesis of polyketides, and other active metabolites are widely used in biomedical applications and agriculture management. This review attempted to limelight the specific applications of thermophilic fungal metabolites and the roles of thermo-stable enzymes in bioprospecting. Moreover, probing the metabolites of thermophiles rendered novel antibiotic compounds, which were proven effective against multi-drug resistant bacteria and harboured the potential to curtail infectious diseases.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | | | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | | | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
5
|
Penagos-Tabares F, Khiaosa-Ard R, Schmidt M, Pacífico C, Faas J, Jenkins T, Nagl V, Sulyok M, Labuda R, Zebeli Q. Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria. Mycotoxin Res 2022; 38:117-136. [PMID: 35347677 PMCID: PMC9038934 DOI: 10.1007/s12550-022-00453-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Fungi and mycotoxins in silage can have detrimental consequences for both cattle and human health. This pilot study identified, via the routinary direct plating method, the dominant cultivable fungi in mouldy grass silages (GS) (n = 19) and maize silages (MS) (n = 28) from Austria. The profiles of regulated, modified, and emerging mycotoxins together with other fungal metabolites were analysed via LC-(ESI)MS/MS. Penicillium roqueforti, Saccharomyces spp., Geotrichum candidum, Aspergillus fumigatus and Monascus ruber were the most frequent fungal organisms identified. Other species including Mucor circinelloides, Fusarium spp. and Paecilomyces niveus were detected at lower frequencies. The presence of complex mixtures of toxic and potentially toxic compounds was evidenced by high levels and occurrences (≥ 50%) of Penicillium-produced compounds such as mycophenolic acid (MPA), roquefortines (ROCs), andrastins (ANDs) and marcfortine A. Mouldy silages contained toxins commonly produced by genus Fusarium (e.g. zearalenone (ZEN) and trichothecenes), Alternaria (like tenuazonic acid (TeA) and alternariol (AHO)) and Aspergillus (such as sterigmatocystin (STC)). Compared to those in GS, mouldy spots in MS presented significantly higher fungal counts and more diverse toxin profiles, in addition to superior levels of Fusarium spp., Penicillium spp. and total fungal metabolites. Generally, no correlation between mould counts and corresponding metabolites was detected, except for the counts of P. roqueforti, which were positively correlated with Penicillium spp. metabolites in mouldy MS. This study represents a first assessment of the fungal diversity in mouldy silage in Austria and highlights its potential role as a substantial contributor to contamination with complex mycotoxin mixtures in cattle diets.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Ratchaneewan Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Cátia Pacífico
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Timothy Jenkins
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenzstrasse 20, 3430, Tulln, Austria
| | - Roman Labuda
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Research Platform Bioactive Microbial Metabolites (BiMM), 3430, Tulln a.d. Donau, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
6
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
7
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
8
|
Singh B, Bala A, Anu, Alokika, Kumar V, Singh D. Biochemical properties of cellulolytic and xylanolytic enzymes from Sporotrichum thermophile and their utility in bioethanol production using rice straw. Prep Biochem Biotechnol 2021; 52:197-209. [PMID: 34010094 DOI: 10.1080/10826068.2021.1925911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Production of cellulolytic and xylanolytic enzymes by Sporotrichum thermophile was enhanced using response surface methodology in solid-state fermentation (SSF) using wheat straw and cotton oil cake. Cellulolytic and xylanolytic enzymes were partially purified by ammonium sulfate precipitation followed by ion exchange and gel filtration chromatographic techniques. Xylanase of S. thermophile is neutral xylanase displaying optimal activity at 60 °C with Km and Vmax values of 0.2 mg/mL and 238.05 µmole/min, respectively. All cellulases produced by the thermophilic mold showed optimal activity at pH 5.0 and 60 °C with Km values of 0.312 mg/mL, 0.113 mg/mL, and 0.285 mM for carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), and β-glucosidase, respectively and while Vmax values were 181.81, 138.88, and 66.67 µmole/min, respectively. The presence of various metal ions (Ca2+ and Co2+), chemical reagent (glutaraldehyde), and surfactants (Tween 80 and Triton X-100) significantly improved the activities of all enzymes. All the enzymes showed high storage stability under low temperature (-20 and 4 °C) conditions. Cellulolytic and xylanolytic enzymes resulted in enhanced liberation of reducing sugars (356.34 mg/g) by hydrolyzing both cellulosic and hemicellulosic fractions of ammonia-pretreated rice straw as compared to other pretreatment methods used in the study. Fermentation of enzymatic hydrolysate resulted in the formation of 28.88 and 27.18 g/L of bioethanol in separate hydrolysis and fermentation (SHF) process by Saccharomyces cerevisiae and Pichia stipitis, respectively. Therefore, cellulolytic and xylanolytic enzymes of S. thermophile exhibited ideal properties of biocatalysts useful in the saccharification of cellulosic and hemicellulosic fractions of rice straw for the production of bioethanol.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India.,Department of Biotechnology, Central University of Haryana, Mahendergarh, India
| | - Anju Bala
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Anu
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, India
| |
Collapse
|
9
|
Improved strategies to efficiently isolate thermophilic, thermotolerant, and heat-resistant fungi from compost and soil. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThermophilic, thermotolerant and heat-resistant fungi developed different physiological traits, enabling them to sustain or even flourish under elevated temperatures, which are life-hostile for most other eukaryotes. With the growing demand of heat-stable molecules in biotechnology and industry, the awareness of heat-adapted fungi as a promising source of respective enzymes and biomolecules is still increasing. The aim of this study was to test two different strategies for the efficient isolation and identification of distinctly heat-adapted fungi from easily accessible substrates and locations. Eight compost piles and ten soil sites were sampled in combination with different culture-dependent approaches to describe suitable strategies for the isolation and selection of thermophilous fungi. Additionally, an approach with a heat-shock treatment, but without elevated temperature incubation led to the isolation of heat-resistant mesophilic species. The cultures were identified based on morphology, DNA barcodes, and microsatellite fingerprinting. In total, 191 obtained isolates were assigned to 31 fungal species, from which half are truly thermophilic or thermotolerant, while the other half are heat-resistant fungi. A numerous amount of heat-adapted fungi was isolated from both compost and soil samples, indicating the suitability of the used approaches and that the richness and availability of those organisms in such environments are substantially high.
Collapse
|
10
|
β-Galactosidase-Producing Isolates in Mucoromycota: Screening, Enzyme Production, and Applications for Functional Oligosaccharide Synthesis. J Fungi (Basel) 2021; 7:jof7030229. [PMID: 33808917 PMCID: PMC8003776 DOI: 10.3390/jof7030229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
β-Galactosidases of Mucoromycota are rarely studied, although this group of filamentous fungi is an excellent source of many industrial enzymes. In this study, 99 isolates from the genera Lichtheimia, Mortierella, Mucor, Rhizomucor, Rhizopus and Umbelopsis, were screened for their β-galactosidase activity using a chromogenic agar approach. Ten isolates from the best producers were selected, and the activity was further investigated in submerged (SmF) and solid-state (SSF) fermentation systems containing lactose and/or wheat bran substrates as enzyme production inducers. Wheat bran proved to be efficient for the enzyme production under both SmF and SSF conditions, giving maximum specific activity yields from 32 to 12,064 U/mg protein and from 783 to 22,720 U/mg protein, respectively. Oligosaccharide synthesis tests revealed the suitability of crude β-galactosidases from Lichtheimia ramosa Szeged Microbiological Collection (SZMC) 11360 and Rhizomucor pusillus SZMC 11025 to catalyze transgalactosylation reactions. In addition, the crude enzyme extracts had transfructosylation activity, resulting in the formation of fructo-oligosaccharide molecules in a sucrose-containing environment. The maximal oligosaccharide concentration varied between 0.0158 and 2.236 g/L depending on the crude enzyme and the initial material. Some oligosaccharide-enriched mixtures supported the growth of probiotics, indicating the potential of the studied enzyme extracts in future prebiotic synthesis processes.
Collapse
|
11
|
Effect of ensiling duration on the fate of deoxynivalenol, zearalenone and their derivatives in maize silage. Mycotoxin Res 2019; 36:127-136. [PMID: 31705430 DOI: 10.1007/s12550-019-00378-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
Fusarium mycotoxins and their derivatives are frequently detected in freshly harvested forage maize. This study assessed the time course effects during ensiling of forage maize on the fate of Fusarium mycotoxins, using laboratory-scale silos and artificially contaminated raw material. A multi-mycotoxin liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was used to determine the levels of deoxynivalenol (DON), zearalenone (ZEN) and their derivatives DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, deepoxy-DON, α-zearalenol and β-zearalenol. A significant increase of DON was observed during ensiling, whereas the levels of DON-3-glucoside and its acetylated forms proportionally decreased. In contrast, levels of ZEN, α-zearalenol and β-zearalenol were not affected by the ensiling process. Based on these findings, ensiling is not a practical method for reducing the total amount of Fusarium mycotoxins present at harvest.
Collapse
|
12
|
Wang D, Zhao C, Liu S, Zhang T, Yao J, Cao Y. Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express 2019; 9:121. [PMID: 31359220 PMCID: PMC6663944 DOI: 10.1186/s13568-019-0846-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
This study investigated the effects of the rumen fungus Piromyces sp. CN6 CGMCC 14449 as a silage additive on the fermentation quality, nutrient composition and in vitro digestibility of whole crop maize silage. Whole crop maize served as the silage material and was vacuum packed in polyethylene bags. Three ensiling treatments were applied: a control (CK), addition of a fungus (FU) at 105 thallus-forming units per gram, and addition of compound enzyme (EN) at 0.033 mg/g (containing cellulase and xylanase at activities of 90 filter paper units and 6000 IU per gram, respectively). Compared with the CK, the FU and EN treatments decreased the pH after 30 days fermentation (P <0.05). Both FU and EN treatments increased the lactate, crude protein, and water-soluble carbohydrate contents (P <0.05), whereas reduced the acetate, ADF and NDF contents as well as the ammonia nitrogen to total nitrogen ratio in silage after 30 days of ensilaging (P <0.05), compared with those for the CK, while no changes were found in the dry matter and dry matter recovery (P > 0.05). The fungal inoculant increased the in vitro digestibility of dry matter, NDF and ADF in silage after 30 days fermentation (P <0.05). In conclusion, the rumen fungus Piromyces sp. CN6 CGMCC 14449 can improve the quality and nutrient composition of whole crop maize silage and increase the crude fibre digestibility.
Collapse
|
13
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
14
|
Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. BIORESOURCE TECHNOLOGY 2019; 277:195-203. [PMID: 30679061 DOI: 10.1016/j.biortech.2019.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.
Collapse
Affiliation(s)
- B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| |
Collapse
|
15
|
Li C, Li J, Wang R, Li X, Li J, Deng C, Wu M. Substituting Both the N-Terminal and “Cord” Regions of a Xylanase from Aspergillus oryzae to Improve Its Temperature Characteristics. Appl Biochem Biotechnol 2018; 185:1044-1059. [DOI: 10.1007/s12010-017-2681-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
16
|
Satari B, Karimi K. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules. Appl Microbiol Biotechnol 2017; 102:1097-1117. [DOI: 10.1007/s00253-017-8691-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
|
17
|
Secretome profiling reveals temperature-dependent growth of Aspergillus fumigatus. SCIENCE CHINA-LIFE SCIENCES 2017; 61:578-592. [PMID: 29067645 DOI: 10.1007/s11427-017-9168-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteases in the secretome revealed the strong capability of A. fumigatus to degrade plant biomass and protein substrates. In total, 129 pathogenesis-related proteins detected in the secretome were strongly correlated with glycoside hydrolases and proteases. The variety and abundance of proteins remained at temperatures of 34°C-45°C. The percentage of endo-1,4-xylanase increased when the temperature was lowered to 20°C, while the percentage of cellobiohydrolase increased as temperature was increased, suggesting that the strain obtains carbon mainly by degrading xylan and cellulose, and the main types of proteases in the secretome were aminopeptidases and carboxypeptidases. Only half of the proteins were retained and their abundance declined to 9.7% at 55°C. The activities of the remaining β-glycosidases and proteases were merely 35% and 24%, respectively, when the secretome was treated at 60°C for 2 h. Therefore, temperatures >60°C restrict the growth of A. fumigatus.
Collapse
|
18
|
Ahirwar S, Soni H, Prajapati BP, Kango N. Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycology 2017. [DOI: 10.1080/21501203.2017.1337657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Saroj Ahirwar
- Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP, India
| | - Hemant Soni
- Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP, India
| | | | - Naveen Kango
- Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|