1
|
Zhang Y, Lu H, Hou L, Zhang X, Guo T, Wang R, Wang Q, Xing M. GPR120 exacerbates the immune-inflammatory response in chicken liver by mediating acetochlor induced macrophage M1 polarization. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136928. [PMID: 39709819 DOI: 10.1016/j.jhazmat.2024.136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Acetochlor is a widely used and highly effective herbicide. Its overuse poses significant threats to biosecurity and ecological integrity, particularly affecting free-ranging birds. Data on its impact, especially mechanisms of liver toxicity in chickens, are lacking. Thus, we established an animal-cell-animal model to explore intrinsic mechanisms at multiple levels. We found that acetochlor exposure caused liver cell swelling, inflammatory cell accumulation, and lipid deposition. Transcriptomic analyses revealed that differential gene were mainly enriched in hepatic immune, inflammatory, and programmed cell death pathways. We next focused on the gene GPR120, conducting transfection and agonism experiments in LMH, HD11, and co-cultured cells. Acetochlor significantly increased ROS accumulation, activated the NLRP3 inflammasome, and which induced PANoptosis. HD11 cells exhibited M1 polarization with upregulated pro-inflammatory factors. Silencing GPR120 exacerbated cellular damage and immune responses, whereas its agonist, GSK7A, dramatically reduced macrophage M1 polarization and mitigated immune damage to LMH cells. Finally, we returned to animal studies, adding Omega-3-a known GPR120 agonist-to the diet. Omega-3 effectively reversed acetochlor-induced hepatitis and PANoptosis. Given that acetochlor residues pose potential threats to ecosystems and avian health, it is crucial to strengthen residue control, conduct risk assessments, and explore targeted pathways and nutritional supplementation to counteract these negative impacts.
Collapse
Affiliation(s)
- Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Xin Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Ruoqi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Qi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
2
|
Lv H, Yang M, Yang Y, Tang Z, Guo Y, Zhou J, Gui Y, Huang R, Cai J, Yu B, Yang J, Bao Y, Zhang Z, Zhang D, Hou T. Metal Ion and Antibiotic Co-loaded Nanoparticles for Combating Methicillin-Rresistant Staphylococcus aureus-Induced Osteomyelitis. ACS NANO 2025; 19:5253-5268. [PMID: 39886847 DOI: 10.1021/acsnano.4c11956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn2+ and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn2+/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn2+/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van. Man-Zn2+/Van NPs can be easily internalized by MRSA-infected macrophages and significantly accumulated in infected bone via Man-mediated targeting. In vivo experiments in a mouse OM model verified that Man-Zn2+/Van NPs significantly reduce the extra- and intracellular MRSA burden, improve gait patterns, increase bone mass, and decrease inflammatory cytokine expression. The antibacterial mechanism of Man-Zn2+/Van NPs includes destruction of the MRSA membrane, degeneration of intracellular proteins and DNA, inhibition of MRSA glycolysis, and intervention in the energy metabolism of bacteria. Overall, this metal-antibiotic nanotherapeutics strategy provides new insight for combating extra- and intracellular infections caused by MRSA-induced OM.
Collapse
Affiliation(s)
- Hui Lv
- Department of Emergency and trauma orthopedics, the 958th Hospital of Chinese People's Liberation Army, Army Medical University (Third Military Medical University), Chongqing 400023, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ming Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yusheng Yang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhenzhen Tang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuan Guo
- Department of Emergency and trauma orthopedics, the 958th Hospital of Chinese People's Liberation Army, Army Medical University (Third Military Medical University), Chongqing 400023, China
| | - Jiangling Zhou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yingtao Gui
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rong Huang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juan Cai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bo Yu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jing Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Bao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhongrong Zhang
- Department of Emergency and trauma orthopedics, the 958th Hospital of Chinese People's Liberation Army, Army Medical University (Third Military Medical University), Chongqing 400023, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Tianyong Hou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
3
|
Li Q, Zhang Q, Su S, Yang S, Shao J, Guan W, Zhang S. Maternal fish oil supplementation enhances nutrient transport in the placenta and milk biosynthesis in the mammary gland via the GPR120 signaling pathway. J Adv Res 2024:S2090-1232(24)00607-6. [PMID: 39706333 DOI: 10.1016/j.jare.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Maternal fish oil (FO) supplementation during pregnancy has been shown to improve pregnancy outcomes. FO is recognized as dietary source for n-3 polyunsaturated fatty acids (n-3 PUFAs). While early research has focused on the benefits of n-3 PUFAs for fetal neurodevelopment, retinal maturation and neonatal behavior, their roles in the placenta during late pregnancy and in the mammary gland during lactation still remain unknow. OBJECTIVES Here, we aim to clarify the mechanisms by which maternal supplementation with FO during pregnancy and lactation affects placental and mammary gland function. METHODS We evaluated the effects of FO on maternal placental nutrient transport, mammary gland milk synthesis and offspring growth. We then explored the molecular mechanisms by which docosahexaenoic acid (DHA) affects the biological function of placental trophoblast cells and mammary epithelial cells through in vitro experiments. Finally, a lipopolysaccharide-challenged experiment was performed to access the potential of maternal FO supplementation in alleviating offspring intestinal inflammation. RESULTS Maternal supplementation with FO during late pregnancy increased offspring birth weight, associated with enhanced maternal placental vascularization and nutrient transporter abundance. Additionally, maternal FO supplementation during lactation improved milk biosynthesis, increasing the fat, protein, and non-fat solids content in both colostrum and mature milk, thereby promoting offspring growth. The stimulatory effects of DHA on nutrient transportation in placental trophoblast cells and nutrient secretion in mammary gland epithelial cells were mediated by GPR120 signaling pathways. Furthermore, maternal FO supplementation strengthened the placental barrier, reduced placental inflammation, oxidative stress and alleviated lipopolysaccharide-induced intestinal inflammation in offspring. CONCLUSION Maternal FO supplementation during late pregnancy and lactation enhances offspring growth by increasing placental nutrient transport and milk biosynthesis, mediated by GPR120. Additionally, maternal FO supplementation reduces the susceptibility of offspring to intestinal inflammation.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Senlin Su
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Chen L, Ai F, Wu X, Yu W, Jin X, Ma J, Xiang B, Shen S, Li X. Analysis of neutrophil extracellular trap-related genes in Crohn's disease based on bioinformatics. J Cell Mol Med 2024; 28:e70013. [PMID: 39199011 PMCID: PMC11358036 DOI: 10.1111/jcmm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Crohn's disease (CD) presents with diverse clinical phenotypes due to persistent inflammation of the gastrointestinal tract. Its global incidence is on the rise. Neutrophil extracellular traps (NETs) are networks released by neutrophils that capture microbicidal proteins and oxidases targeting pathogens. Research has shown that NETs are implicated in the pathogenesis of several immune-mediated diseases such as rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. The goal of this study was to identify a panel of NET-related genes to construct a diagnostic and therapeutic model for CD. Through analysis of the GEO database, we identified 1950 differentially expressed genes (DEGs) associated with CD. Gene enrichment and immune cell infiltration analyses indicate that neutrophil infiltrates and chemokine-related pathways are predominantly involved in CD, with other immune cells such as CD4 and M1 macrophages also playing a role in disease progression. Utilizing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) networks, we identified six hub genes (SPP1, SOCS3, TIMP1, IRF1, CXCL2 and CD274). To validate the accuracy of our model, we performed external validation with statistical differences(p < 0.05). Additionally, immunohistochemical experiments demonstrated higher protein expression of the hub genes in colonic tissues from CD patients compared to healthy subjects (p < 0.05). In summary, we identified six effective hub genes associated with NETs as potential diagnostic markers for CD. These markers not only offer targets for future research but also hold promise for the development of novel therapeutic interventions for CD.
Collapse
Affiliation(s)
- Libin Chen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Feiyan Ai
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xing Wu
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Wentao Yu
- Department of Pathology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xintong Jin
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shourong Shen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiayu Li
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
5
|
Mao Z, Zhang J, Guo L, Wang X, Zhu Z, Miao M. Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:321-328. [PMID: 39364121 PMCID: PMC11444859 DOI: 10.12938/bmfh.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024]
Abstract
Ischemic stroke (IS) is the predominant form of stroke pathology, and its clinical management remains constrained by therapeutic time frame. The gut microbiota (GM), comprising a multitude of bacterial and archaeal cells, surpasses the human cell count by approximately tenfold and significantly contributes to the human organism's growth, development, and overall well-being. The microbiota-gut-brain axis (MGBA) in recent years has established a strong association between gut microbes and the brain, demonstrating their intricate involvement in the progression of IS. The regulation of IS by the GM, encompassing changes in composition, abundance, and distribution, is multifaceted, involving neurological, endocrine, immunological, and metabolic mechanisms. This comprehensive understanding offers novel insights into the therapeutic approaches for IS. The objective of this paper is to examine the mechanisms of interaction between the GM and IS in recent years, assess the therapeutic effects of the GM on IS through various interventions, such as dietary modifications, probiotics, fecal microbiota transplantation, and antibiotics, and offer insights into the potential clinical application of the GM in stroke treatment.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Jinying Zhang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Xiaoran Wang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Zhengwang Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Nagappan S, Apoorva S, Shome A, Bishnoi S, Shrivastava S, Mahawar M. Sensitivity to antimicrobial peptide A (SapA) contributes to the survival of Salmonella typhimurium against antimicrobial peptides, neutrophils and virulence in mice. Arch Microbiol 2024; 206:302. [PMID: 38874634 DOI: 10.1007/s00203-024-04032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Host-generated antimicrobial peptides (AMPs) play a pivotal role in defense against bacterial pathogens. AMPs kill invading bacteria majorly by disrupting the bacterial cell walls. AMPs are actively synthesized and released into the lumen of the gastrointestinal tract to limit colonization of enteric pathogens like Salmonella typhimurium (S. typhimurium). However, S. typhimurium has evolved several resistance mechanisms to defend AMPs. The multicomponent SapABCDF uptake transporter is one such system that helps in resisting AMPs. In the current study, we analyzed the role of S. typhimurium SapA against stress survival and virulence of this bacterium. ∆sapA mutant strain showed hypersensitivity to AMPs, like melittin and mastoparan. Further, ∆sapA mutant showed more than 22 folds (p = 0.019) hypersensitivity to neutrophils as compared to the WT strain of S. typhimurium. In addition, ∆sapA strain showed defective survival in mice. In conclusion, the results of the current study suggest that the SapA is essential for survival against AMPs and virulence of S. typhimurium.
Collapse
Affiliation(s)
- Sabapathi Nagappan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shekhar Apoorva
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shikha Bishnoi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| |
Collapse
|
7
|
Huang Y, Liu J, Liang D. Comprehensive analysis reveals key genes and environmental toxin exposures underlying treatment response in ulcerative colitis based on in-silico analysis and Mendelian randomization. Aging (Albany NY) 2023; 15:14141-14171. [PMID: 38059894 PMCID: PMC10756092 DOI: 10.18632/aging.205294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND UC is increasingly prevalent worldwide and represents a significant global disease burden. Although medical therapeutics are employed, they often fall short of being optimal, leaving patients struggling with treatment non-responsiveness and many related complications. MATERIALS AND METHODS The study utilized gene microarray data and clinical information from GEO. Gene enrichment and differential expression analyses were conducted using Metascape and Limma, respectively. Lasso Regression Algorithm was constructed using glmnet and heat maps were generated using pheatmap. ROC curves were used to assess diagnostic parameter capability, while XSum was employed to screen for small-molecule drugs exacerbating UC. Molecular docking was carried out using Autodock Vina. The study also performed Mendelian randomization analysis based on TwoSampleMR and used CTD to investigate the relationship between exposure to environmental chemical toxicants and UC therapy responsiveness. RESULTS Six genes (ELL2, DAPP1, SAMD9L, CD38, IGSF6, and LYN) were found to be significantly overexpressed in UC patient samples that did not respond to multiple therapies. Lasso analysis identified ELL2 and DAPP1 as key genes influencing UC treatment response. Both genes accurately predicted intestinal inflammation in UC and impacted the immunological infiltration status. Clofibrate showed therapeutic potential for UC by binding to ELL2 and DAPP1 proteins. The study also reviews environmental toxins and drug exposures that could impact UC progression. CONCLUSIONS We used microarray technology to identify DAPP1 and ELL2 as key genes that impact UC treatment response and inflammatory progression. Clofibrate was identified as a promising UC treatment. Our review also highlights the impact of environmental toxins on UC treatment response, providing valuable insights for personalized clinical management.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing 246000, Anhui Province, China
| | - Jie Liu
- Department of Gastroenterology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Dingbao Liang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing 246000, Anhui Province, China
| |
Collapse
|