1
|
Zhao Y, Yu Y, Chen W, Zhang X, Lv J, Zhao H. Oligodendroglioma: Advances in Molecular Mechanisms and Immunotherapeutic Strategies. Biomedicines 2025; 13:1133. [PMID: 40426960 PMCID: PMC12108979 DOI: 10.3390/biomedicines13051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Oligodendroglioma is a central nervous system tumor defined by IDH1/2 mutations and 1p/19q co-deletion. Current management involves maximal resection followed by radiotherapy/chemotherapy, yielding a 20-year survival rate of 37% for grade 3 tumors according to the WHO 2021 classification. As these tumors primarily affect young to middle-aged patients, novel therapies are urgently needed to improve outcomes. Immunotherapy has revolutionized tumor treatment by modulating immune responses. However, its application in oligodendrogliomas faces two major hurdles, including the immunosuppressive tumor microenvironment (TME) and the blood-brain barrier's restrictive properties. This review first examines oligodendroglioma's molecular alterations to refine diagnosis and guide targeted therapies. Next, we focus on the oligodendroglioma TME to evaluate emerging immunotherapies, including oncolytic viruses, immune checkpoint blockade, chimeric antigen receptor (CAR) T-cell therapy, and cancer vaccines. Finally, we discuss current challenges and future directions to overcome therapeutic limitations and advance treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.Z.); (Y.Y.); (W.C.); (X.Z.)
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.Z.); (Y.Y.); (W.C.); (X.Z.)
| |
Collapse
|
2
|
Imran M, Altamimi ASA, Babu MA, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Non-coding RNAs (ncRNAs) as therapeutic targets and biomarkers in oligodendroglioma. Pathol Res Pract 2024; 264:155708. [PMID: 39531874 DOI: 10.1016/j.prp.2024.155708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Oligodendrogliomas (ODGs) are neuroepithelial tumors that need personalized treatment plans because of their unique molecular and histological features. Non-coding RNAs form an epigenetic class of molecules that act as the first steps in gene regulation. They consist of microRNAs, long non-coding RNAs, and circular RNAs. These molecules significantly participate in ODG pathogenesis by regulating ODG initiation, progression, and treatment response. This review is designated to analyze the literature and describe the genomic profile of ODGs, the complex actions of ncRNAs in ODGs pathogenesis and treatment, and their roles as appropriate biomarkers and as one of the precision mechanisms action targets, such as antisense oligonucleotides, small interfering RNAs, gene therapy vectors, peptide nucleic acids, and small molecule inhibitors. Overall, ncRNAs considerably alter the pathological spectrum of ODGs by influencing fundamental processes in tumor biology. Applying ncRNAs in a clinical context exhibits promise for enhanced diagnosis and individualized therapeutic interventions. Nevertheless, the delivery efficacy and potential adverse "off-target" sequels retain the main obstacles undermining clinical potential. Continuous research and technological advancements in ncRNAs offer new insights and promising prospects for revolutionizing oligodendroglioma care, leading to better, personalized treatment outcomes.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia; Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf City 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
3
|
Miyata K, Zhou X, Nishio M, Hanyu A, Chiba M, Kawasaki H, Osako T, Takeuchi K, Ohno S, Ueno T, Maruyama R, Takahashi A. Chromatin conformational changes at human satellite II contribute to the senescence phenotype in the tumor microenvironment. Proc Natl Acad Sci U S A 2023; 120:e2305046120. [PMID: 37523559 PMCID: PMC10410700 DOI: 10.1073/pnas.2305046120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Cellular senescence and senescence-associated secretory phenotype (SASP) in stromal cells within the tumor microenvironment promote cancer progression. Although cellular senescence has been shown to induce changes in the higher-order chromatin structure and abnormal transcription of repetitive elements in the genome, the functional significance of these changes is unclear. In this study, we examined the human satellite II (hSATII) loci in the pericentromere to understand these changes and their functional significance. Our results indicated that the hSATII loci decompact during senescence induction, resulting in new DNA-DNA interactions in distinct genomic regions, which we refer to as DRISR (Distinctive Regions Interacted with Satellite II in Replicative senescent Fibroblasts). Interestingly, decompaction occurs before the expression of hSATII RNA. The DRISR with altered chromatin accessibility was enriched for motifs associated with cellular senescence and inflammatory SASP genes. Moreover, DNA-fluorescence in situ hybridization analysis of the breast cancer tissues revealed hSATII decompaction in cancer and stromal cells. Furthermore, we reanalyzed the single-cell assay for transposase-accessible chromatin with sequencing data and found increased SASP-related gene expression in fibroblasts exhibiting hSATII decompaction in breast cancer tissues. These findings suggest that changes in the higher-order chromatin structure of the pericentromeric repetitive sequences during cellular senescence might directly contribute to the cellular senescence phenotype and cancer progression via inflammatory gene expression.
Collapse
Affiliation(s)
- Kenichi Miyata
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Xiangyu Zhou
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Mika Nishio
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Aki Hanyu
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Masatomo Chiba
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Hiroko Kawasaki
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Shinji Ohno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Takayuki Ueno
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
- Advanced Research and Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development, Tokyo100-0004, Japan
| |
Collapse
|