1
|
Li X, Zheng Y. Structural response and mechanical properties of the hind wing of the beetle Protaetia brevitarsis. Microsc Res Tech 2024; 87:2013-2026. [PMID: 38623765 DOI: 10.1002/jemt.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
The folding/unfolding mechanism and collision recovery effect of the beetle's hind wings can provide biomimetic inspiration for the optimization of wing deplorability and the investigation of collision prevention recovery mechanism of new amphibious morphing vehicle. In this study, a method is described to investigate the structural response and mechanical properties of the hind wings of the beetle Protetia brevitarsis under natural conditions. The specially processed test samples were conducted to tensile testing, which facilitates the evaluation of the mechanical properties of specific areas of the hind wing. The micro geometric morphological characteristics of the cross-section of the specimen after tensile fracture were observed by scanning electron microscopy. The three-dimensional morphology of the ventral and dorsal sides of the hind wing was characterized using three-dimensional scanning and reverse modeling methods. The finite element model of the hind wing is developed to investigate the structural deformation and modal response characteristics of its flapping. The uniformly distributed load on the hind wing surface is derived from the lift characteristics obtained from the computational fluid dynamics simulation of flapping wing motion. RESEARCH HIGHLIGHTS: Scanning electron microscope is used to observe the cross-sectional characteristics of the veins and membranes. The material properties of the wing membranes and veins of the hind wings were measured using the tensile testing system. The three-dimensional morphology of the hind wing was characterized using 3D scanning and reverse modeling methods. The finite element model of the hind wing is developed to investigate the structural deformation and modal response characteristics of its flapping.
Collapse
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical Engineering, Suqian University, Suqian, People's Republic of China
| | - Yu Zheng
- College of Mechanical and Electrical Engineering, Suqian University, Suqian, People's Republic of China
| |
Collapse
|
2
|
Fu C, Yang T, Liao H, Huang Y, Wang H, Long W, Jiang N, Yang Y. Genome-wide identification and molecular evolution of elongation family of very long chain fatty acids proteins in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:758. [PMID: 39095734 PMCID: PMC11297609 DOI: 10.1186/s12864-024-10658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
To reveal the molecular function of elongation family of very long chain fatty acids(ELO) protein in Cyrtotrachelus buqueti, we have identified 15 ELO proteins from C.buqueti genome. 15 CbuELO proteins were located on four chromosomes. Their isoelectric points ranged from 9.22 to 9.68, and they were alkaline. These CbuELO proteins were stable and hydrophobic. CbuELO proteins had transmembrane movement, and had multiple phosphorylation sites. The secondary structure of CbuELO proteins was mainly α-helix. A total of 10 conserved motifs were identified in CbuELO protein family. Phylogenetic analysis showed that molecular evolutionary relationships of ELO protein family between C. buqueti and Tribolium castaneum was the closest. Developmental transcriptome analysis indicated that CbuELO10, CbuELO13 and CbuELO02 genes were key enzyme genes that determine the synthesis of very long chain fatty acids in pupae and eggs, CbuELO6 and CbuELO7 were that in the male, and CbuELO8 and CbuELO11 were that in the larva. Transcriptome analysis under different temperature conditions indicated that CbuELO1, CbuELO5, CbuELO12 and CbuELO14 participated in regulating temperature stress responses. Transcriptome analysis at different feeding times showed CbuELO12 gene expression level in all feeding time periods was significant downregulation. The qRT-PCR experiment verified expression level changes of CbuELO gene family under different temperature and feeding time conditions. Protein-protein interaction analysis showed that 9 CbuELO proteins were related to each other, CbuELO1, CbuELO4 and CbuELO12 had more than one interaction relationship. These results lay a theoretical foundation for further studying its molecular function during growth and development of C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - Ting Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Hong Liao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YuLing Huang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - WenCong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| |
Collapse
|
3
|
Rahman MM, Ahmed L, Anika F, Riya AA, Kali SK, Rauf A, Sharma R. Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorg Chem Appl 2023; 2023:2409642. [PMID: 37077203 PMCID: PMC10110382 DOI: 10.1155/2023/2409642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Anha Akter Riya
- Department of Pharmacy, East-West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Li X. Numerical Simulations of the Effect of the Asymmetrical Bending of the Hindwings of a Hovering C. buqueti Bamboo Weevil with Respect to the Aerodynamic Characteristics. MICROMACHINES 2022; 13:1995. [PMID: 36422423 PMCID: PMC9698059 DOI: 10.3390/mi13111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The airfoil structure and folding pattern of the hindwings of a beetle provide new transformation paths for improvements in the aerodynamic performance and structural optimization of flapping-wing flying robots. However, the explanation for the aerodynamic mechanism of the asymmetrical bending of a real beetle's hindwings under aerodynamic loads originating from the ventral and dorsal sides is unclear. To address this gap in our understanding, a computational investigation into the aerodynamic characteristics of the flight ability of C. buqueti and the large folding ratio of their hindwings when hovering is carried out in this article. A three-dimensional (3D) pressure-based SST k-ω turbulence model with a biomimetic structure was used for the detailed analysis, and a refined polyhedral mesh was used for the simulations. The results show that the fluid around the hindwings forms a vortex ring consisting of a leading-edge vortex (LEV), wing-tip vortex (TV) and trailing-edge vortex (TEV). Approximately 61% of the total lift is generated during the downstroke, which may be closely related to the asymmetric bending of the hindwings when they are subjected to pressure load.
Collapse
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China
| |
Collapse
|
5
|
Scolari F, Girella A, Croce AC. Imaging and spectral analysis of autofluorescence patterns in larval head structures of mosquito vectors. Eur J Histochem 2022; 66. [PMID: 36128772 PMCID: PMC9528535 DOI: 10.4081/ejh.2022.3462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Autofluorescence (AF) in mosquitoes is currently poorly explored, despite its great potential as a marker of body structures and biological functions. Here, for the first time AF in larval heads of two mosquitoes of key public health importance, Aedes albopictus and Culex pipiens, is studied using fluorescence imaging and spectrofluorometry, similarly to a label-free histochemical approach. In generally conserved distribution patterns, AF shows differences between mouth brushes and antennae of the two species. The blue AF ascribable to resilin at the antennal bases, more extended in Cx. pipiens, suggests a potential need to support different antennal movements. The AF spectra larger in Cx. pipiens indicate a variability in material composition and properties likely relatable to mosquito biology, including diverse feeding and locomotion behaviours with implications for vector control.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia.
| | - Alessandro Girella
- Department of Chemistry - C.S.G.I., University of Pavia; Centro Interdipartimentale di Studi e Ricerche per la Conservazione del Patrimonio Culturale (CISRiC), University of Pavia.
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia.
| |
Collapse
|
6
|
Li X, Zheng Y. Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti. IET Nanobiotechnol 2022; 16:273-283. [PMID: 35962575 PMCID: PMC9469788 DOI: 10.1049/nbt2.12095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
The bamboo weevil beetle, Cyrtotrachelus buqueti, has evolved a particular flight pattern. When crawling, the beetle folds the flexible hind wings and stuffs under the rigid elytra. During flight, the hind wings are deployed through a series of deployment joints that are passively driven by flapping forces. When the hind wings are fully expanded, the unfolding joint realises self‐locking. At this time, the hind wings act as a folded wing membrane and flap simultaneously with the elytra to generate aerodynamics. The functional characteristics of the elytra of the bamboo weevil beetle were investigated, including microscopic morphology, kinematic properties and aerodynamic forces of the elytra. In particular, the flapping kinematics of the elytra were measured using high‐speed cameras and reconstructed using a modified direct linear transformation algorithm. Although the elytra are passively flapped by the flapping of the hind wings, the analysis shows that its flapping wing trajectory is a double figure‐eight pattern with flapping amplitude and angle of attack. The results show that the passive flapping of elytra produces aerodynamic forces that cannot be ignored. The kinematics of the elytra suggest that this beetle may use well‐known flapping mechanisms such as a delayed stall and clap and fling.
Collapse
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical Engineering, Suqian University, Suqian, China
| | - Yu Zheng
- College of Mechanical and Electrical Engineering, Suqian University, Suqian, China
| |
Collapse
|
7
|
Li X, Guo C. Structural characteristics analysis of the hind wings in a bamboo weevil ( Cyrtotrachelus buqueti). IET Nanobiotechnol 2020; 13:850-856. [PMID: 31625526 DOI: 10.1049/iet-nbt.2018.5409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The finite element method is a powerful tool for evaluating the experimental results. It can help to study the flight mechanism of insects and the structural characteristics of flying wings. Therefore, the research object based on the hind wings of Cyrtotrachelus buqueti (C. buqueti) was completed here. A finite element model with a length of 45 mm in the spanwise direction and a 16 mm width in the chordwise direction were established. We used a three-dimensional (3D) scanner to scan a real hind wing to obtain point cloud images. The physical model of the hind wing was carried out by using both the software Imageware and Unigraphics NX. To quantify the quality of the finite element model of the hind wing, the material properties of the wing membranes and veins were conducted by the tensile testing machine. The structural static properties of the hind wing, including static characteristics analysis and natural vibration modal analysis, were analysed by ANSYS; the stress and deflection under uniformly distributed load, bending moment, and torque were, respectively, shown. It was found that the model only had a small deformation, which shows that the hind wings of C. buqueti have excellent structural properties.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Key Laboratory of Bionic Functional Materials, Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Ce Guo
- Jiangsu Key Laboratory of Bionic Functional Materials, Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| |
Collapse
|
8
|
Li X, Guo C. Wing-kinematics measurement and flight modelling of the bamboo weevil C. buqueti. IET Nanobiotechnol 2020; 14:53-58. [PMID: 31935678 PMCID: PMC8676614 DOI: 10.1049/iet-nbt.2019.0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022] Open
Abstract
Insects are one of the most agile flyers in nature, and studying the kinematics of their wings can provide important data for the design of insect-like wing-flapping micro aerial vehicles. This study integrates high-speed photogrammetry and three-dimensional (3D) force measurement system to explore the kinematics of Cyrtotrachelus buqueti during the wing-flapping flight. The tracking point at the wing tip of the hind wing was recorded using high-speed videography. The lift-thrust force characteristic of wing-flapping motion was obtained by the 3D force sensor. Quantitative measurements of wing kinematics show that the wing-flapping pattern of the hind wing of C. buqueti was revealed as a double figure-eight trajectory. The kinematic modelling of the wing-flapping pattern was then established by converting the flapping motion into rotational motion about the pivoting wing base in the reference coordinate system. Moreover, the lift force generated by C. buqueti during the wing-flapping flight is sufficient to support its body weight without the need to use thrust force to compensate for the lack of lift force.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Key Laboratory of Bionic Functional Materials, Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Ce Guo
- Jiangsu Key Laboratory of Bionic Functional Materials, Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China.
| |
Collapse
|