1
|
Demkina A, Slonova D, Mamontov V, Konovalova O, Yurikova D, Rogozhin V, Belova V, Korostin D, Sutormin D, Severinov K, Isaev A. Benchmarking DNA isolation methods for marine metagenomics. Sci Rep 2023; 13:22138. [PMID: 38092853 PMCID: PMC10719357 DOI: 10.1038/s41598-023-48804-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Metagenomics is a powerful tool to study marine microbial communities. However, obtaining high-quality environmental DNA suitable for downstream sequencing applications is a challenging task. The quality and quantity of isolated DNA heavily depend on the choice of purification procedure and the type of sample. Selection of an appropriate DNA isolation method for a new type of material often entails a lengthy trial and error process. Further, each DNA purification approach introduces biases and thus affects the composition of the studied community. To account for these problems and biases, we systematically investigated efficiency of DNA purification from three types of samples (water, sea sediment, and digestive tract of a model invertebrate Magallana gigas) with eight commercially available DNA isolation kits. For each kit-sample combination we measured the quantity of purified DNA, extent of DNA fragmentation, the presence of PCR-inhibiting contaminants, admixture of eukaryotic DNA, alpha-diversity, and reproducibility of the resulting community composition based on 16S rRNA amplicons sequencing. Additionally, we determined a "kitome", e.g., a set of contaminating taxa inherent for each type of purification kit used. The resulting matrix of evaluated parameters allows one to select the best DNA purification procedure for a given type of sample.
Collapse
Affiliation(s)
- Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Darya Slonova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Viktor Mamontov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga Konovalova
- Marine Research Center of Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria Yurikova
- Marine Research Center of Lomonosov Moscow State University, Moscow, Russia
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Rogozhin
- Marine Research Center of Lomonosov Moscow State University, Moscow, Russia
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Vera Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Sutormin
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | | | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
2
|
Wu-Woods NJ, Barlow JT, Trigodet F, Shaw DG, Romano AE, Jabri B, Eren AM, Ismagilov RF. Microbial-enrichment method enables high-throughput metagenomic characterization from host-rich samples. Nat Methods 2023; 20:1672-1682. [PMID: 37828152 PMCID: PMC10885704 DOI: 10.1038/s41592-023-02025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/27/2023] [Indexed: 10/14/2023]
Abstract
Host-microbe interactions have been linked to health and disease states through the use of microbial taxonomic profiling, mostly via 16S ribosomal RNA gene sequencing. However, many mechanistic insights remain elusive, in part because studying the genomes of microbes associated with mammalian tissue is difficult due to the high ratio of host to microbial DNA in such samples. Here we describe a microbial-enrichment method (MEM), which we demonstrate on a wide range of sample types, including saliva, stool, intestinal scrapings, and intestinal mucosal biopsies. MEM enabled high-throughput characterization of microbial metagenomes from human intestinal biopsies by reducing host DNA more than 1,000-fold with minimal microbial community changes (roughly 90% of taxa had no significant differences between MEM-treated and untreated control groups). Shotgun sequencing of MEM-treated human intestinal biopsies enabled characterization of both high- and low-abundance microbial taxa, pathways and genes longitudinally along the gastrointestinal tract. We report the construction of metagenome-assembled genomes directly from human intestinal biopsies for bacteria and archaea at relative abundances as low as 1%. Analysis of metagenome-assembled genomes reveals distinct subpopulation structures between the small and large intestine for some taxa. MEM opens a path for the microbiome field to acquire deeper insights into host-microbe interactions by enabling in-depth characterization of host-tissue-associated microbial communities.
Collapse
Affiliation(s)
- Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Jacob T Barlow
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dustin G Shaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Anna E Romano
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred-Wegener-Institute for Marine and Polar Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA.
| |
Collapse
|