1
|
Chai M, Zhang CY, Chen S, Xu DH. Application of autophagy in mesenchymal stem cells. World J Stem Cells 2024; 16:990-1001. [PMID: 39734481 PMCID: PMC11669988 DOI: 10.4252/wjsc.v16.i12.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
In this editorial, we have taken an in-depth look at the article published by Wan et al. The study showed that preconditioning mesenchymal stem cells (MSCs) protected them against programmed cell death, and increased their survival rate and therapeutic potential. Autophagy, a type of programmed cell death, is a major intracellular degradation and recycling pathway that is crucial for maintaining cellular homeostasis, self-renewal, and pluripotency. We have explored the relationship between autophagy and MSCs to determine the role of autophagy in the therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Min Chai
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Chun-Yan Zhang
- Department of Rehabilitation Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Shuai Chen
- Department of Emergency Surgery, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Da-Hai Xu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China.
| |
Collapse
|
2
|
Shao Y, Sun L, Ma B, Jin R, Ban Y, Li R, Wang J, Lian H, Yue H. VCAM-1 Promotes Angiogenesis of Bone Marrow Mesenchymal Stem Cells Derived from Patients with Trauma-Induced Osteonecrosis of the Femoral Head by Regulating the Apelin/CCN2 Pathway. Stem Cells Int 2023; 2023:6684617. [PMID: 37868703 PMCID: PMC10586908 DOI: 10.1155/2023/6684617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
Trauma-induced osteonecrosis of the femoral head (TI-ONFH) is a pathological process in which the destruction of blood vessels supplying blood to the femoral head causes the death of bone tissue cells. Vascular cell adhesion molecule 1 (VCAM-1) has been shown to have potent proangiogenic activity, but the role in angiogenesis of TI-ONFH is unclear. In this work, we discovered that VCAM-1 was significantly downregulated in the bone marrow mesenchymal stem cells (BMSCs) derived from patients with TI-ONFH. Subsequently, we constructed BMSCs overexpressing VCAM-1 using a lentiviral vector. VCAM-1 enhances the migration and angiogenesis of BMSCs. We further performed mRNA transcriptome sequencing to explore the mechanisms by which VCAM-1 promotes angiogenesis. Gene ontology biological process enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were related to blood vessel development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that upregulated DEGs were engaged in the Apelin signaling pathway. Apelin-13 is the endogenous ligand of the APJ receptor and activates this G protein-coupled receptor. Treatment with Apelin-13 activated the Apelin signaling pathway and suppressed the expression of cellular communication network factor 2 in BMSCs. Furthermore, Apelin-13 also inhibits the migration and angiogenesis of VCAM-1-BMSCs. In summary, VCAM-1 plays an important role in vascular microcirculation disorders of TI-ONFH, which provides a new direction for the molecular mechanism and treatment of TI-ONFH.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Lei Sun
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Baodong Ma
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ranran Jin
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Yueyao Ban
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ruibo Li
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Jianfa Wang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Han Yue
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zheng LW, Lan CN, Kong Y, Liu LH, Fan YM, Zhang CJ. Exosomal miR-150 derived from BMSCs inhibits TNF-α-mediated osteoblast apoptosis in osteonecrosis of the femoral head by GREM1/NF-κB signaling. Regen Med 2022; 17:739-753. [PMID: 35938412 DOI: 10.2217/rme-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The purpose of this study was to investigate the functions of exosomal miR-150 derived from bone marrow mesenchymal stem cells in osteonecrosis of the femoral head (ONFH). Materials & methods: Cell viability and apoptosis were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Alizarin red staining was performed to detect calcium deposits. A rat model was established to assess the effects of exosomal miR-150 on ONFH in vivo. Results: Exosomes or exosomal miR-150 derived from bone marrow mesenchymal stem cells inhibited TNF-α-induced osteoblast apoptosis and promoted osteogenic differentiation and autophagy. Exosomal miR-150 suppressed apoptosis and induced autophagy in TNF-α-treated osteoblasts by regulating the GREM1/NF-κB axis. Exosomal miR-150 also improved the pathological features of ONFH in vivo. Conclusion: Exosomal miR-150 alleviates ONFH by mediating the GREM1/NF-κB axis. This study provides a potential therapeutic strategy for ONFH.
Collapse
Affiliation(s)
- Li-Wen Zheng
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chun-Na Lan
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ying Kong
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Li-Hong Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yong-Mei Fan
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Jie Zhang
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|