1
|
Khazaei S, Parvin P, Ahmadinouri F, Shamsi E, Dodangeh M. Optical assessment of heroin using laser-induced fluorescence spectroscopy based on modified Beer-Lambert formalism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125777. [PMID: 39864183 DOI: 10.1016/j.saa.2025.125777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Heroin as a derivative of morphine contains the alkaloids and flavonoids with plenty of three to five aromatic rings. The latter is known as the main source of fluorescence emission after laser excitation. Here, laser induced fluorescence (LIF) spectroscopy at excitation line of 405 nm with the solvent densitometry method is introduced based on modified Beer-Lambert (MBL), for the rapid and reliable identification of street heroin samples. Not only this hybrid method is cost effective, portable and easy to operate, but also it demonstrates an accurate technique based on the four unique parameters of the concentration at peak (Cp), self-quenching (K), and extinction coefficients (α) as well as the Stocks shift (SS).
Collapse
Affiliation(s)
- Samaneh Khazaei
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, Iran.
| | - Fatemeh Ahmadinouri
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, Iran
| | - Ehsan Shamsi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, Iran
| | - Masood Dodangeh
- Department of Chemistry, Isfahan University of Technology P. O. Box 84156-833111 Isfahan, Iran
| |
Collapse
|
2
|
Griffin A, Kirkbride KP, Painter B, Henry J, Linacre A. A systematic approach to the analysis of illicit drugs for DNA with an overview of the problems encountered. Forensic Sci Int 2024; 361:112132. [PMID: 38981416 DOI: 10.1016/j.forsciint.2024.112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Due to the restricted nature of illicit drugs, it is difficult to conduct research surrounding the analysis of this drug material for any potential DNA in sufficient quantities acceptable for high numbers of replicates. Therefore, the current research available in peer reviewed journals thus far regarding analysing illicit drugs for DNA has been performed under varying experimental conditions, often using surrogate chemicals in place of illicit drugs. The data presented within this study originated from the analysis of genuine illicit drugs prepared both in controlled environments and those seized at the Australian border (and therefore from an uncontrolled environment) to determine if DNA can be obtained from this type of material. This study has been separated into three main parts (total n=114 samples): firstly, methamphetamine synthesised within a controlled environment was spiked with both saliva and trace DNA to determine the yield following DNA extraction; secondly, methamphetamine also synthesised in a controlled environment but on a larger scale was tested for the amount of DNA added incidentally throughout the synthesis, including the additional steps of recrystallising, homogenising and "cutting" the drug material to simulate preparation for distribution; and thirdly, the detection of human DNA within samples of cocaine and heroin seized at the Australian border. The DNA Fast Flow Microcon Device was utilised to concentrate all replicates from the same source into one combined extract to improve the DNA profiles for the samples where no DNA spiking occurred. Full STR profiles were successfully obtained from drug samples spiked with both saliva and trace DNA. Methamphetamine was present in the final DNA extracts and caused incompatibilities with the quantification of DNA using Qubit. The yields of DNA from drugs not spiked with DNA sources were much lower, resulting in 36 % of samples yielding alleles where all others did not. These results were not unexpected given these were realistic drug samples where the history of the drug material was unknown. This is the first study to obtain DNA profiles from genuine illicit drug material in both controlled and uncontrolled environments and indicates that the analysis of illicit drugs for DNA is an avenue worth pursuing to provide information which can in turn assist with disrupting the supply of these drugs. Given that DNA profiling is carried out worldwide using essentially the same systems as described within this study, the potential for impact is on a national and international scale.
Collapse
Affiliation(s)
- Amy Griffin
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia.
| | - K Paul Kirkbride
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| | - Ben Painter
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Julianne Henry
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
3
|
Shamsi E, Parvin P, Ahmadinouri F, Khazai S. Laser-induced fluorescence spectroscopy of plant-based drugs: Opium and hashish provoking at 405 nm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123055. [PMID: 37390713 DOI: 10.1016/j.saa.2023.123055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Here, the fluorescence properties of some plant-based drug samples are characterized using a coherent excitation source at 405 nm. The laser-induced fluorescence (LIF) spectroscopy is examined to analyze opium and hashish. In order to improve traditional fluorescence methods for better analysis of optically dense materials, we have proposed five characteristic parameters based on solvent densitometry assay as the fingerprints of drugs of interest. The signal emissions are recorded in terms of various drug concentrations, such that the best fitting over experimental data determines the fluorescence extinction (α) and self-quenching (k) coefficients according to the modified Beer-Lambert formalism. The typical α value is determined to be 0.30 and 0.15 mL/(cm∙mg) for opium and hashish, respectively. Similarly, typical k is obtained 0.390 and 1.25 mL/(cm∙mg), respectively. Furthermore, the concentration at max fluorescence intensity (Cp) is determined for opium and hashish to be 1.8 and 1.3 mg/mL, respectively. Results reveal that opium and hashish benefit their own characteristic fluorescence parameters to discriminate those illicit substances promptly using the present method.
Collapse
Affiliation(s)
- Ehsan Shamsi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Fatemeh Ahmadinouri
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Samaneh Khazai
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
4
|
Cui SF, Yang HL, Lin SY, Wan JW, Zhou CH. Identification and Quantification of the Main Psychoactive Ingredients of Cannabis in Urine Using Excitation-Eemission Matrix Fluorescence Coupled with Parallel Factor Analysis. ACS OMEGA 2023; 8:36302-36310. [PMID: 37810707 PMCID: PMC10552475 DOI: 10.1021/acsomega.3c04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Cannabis is the most prevalent abused substance after alcohol, and its consumption severely harms human health and thus adversely impacts society. The identification and quantification of cannabis in urine play important roles in practical forensics. Excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor (PARAFAC) analysis was developed to identify and quantify the four main ingredients of cannabis in urine samples. The main ingredients of cannabis including Δ-9-tetrahydrocannabinol (THC), cannabidiol, cannabinol, and tetrahydrocannabinolic acid (THC-COOH) exhibited diverse fluorescence characteristics, and the concentrations of these compounds depicted a positive linear relationship with the fluorescence intensity at the ng/mL level. The EEM/PARAFAC method adequately characterized and discriminated the four ingredients in calibration and prediction samples with a low root-mean-square error of prediction (RMSEP; 0.03-0.07 μg/mL) and limit of quantitation (LOQ; 0.26-0.71 μg/mL). The prediction results of the EEM/PARAFAC method well correlated with that of GC-MS with a low RMSEP range (0.01-0.05 μg/mL) and LOQ range (0.07-0.44 μg/mL) in urine samples. The EEM spectroscopic investigation coupled with the PARAFAC algorithm results in an organic, solvent-less, fast, reliable tool to perform accurate and rapid screening of cannabis abusers.
Collapse
Affiliation(s)
- Sheng-Feng Cui
- Center
for Traffic Evidence Technology, Department of Criminal Science and
Technology, Railway Police College, Zhengzhou 450053, China
- Institute
of Public Safety, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Long Yang
- Center
for Traffic Evidence Technology, Department of Criminal Science and
Technology, Railway Police College, Zhengzhou 450053, China
| | - Si-Yu Lin
- Center
for Traffic Evidence Technology, Department of Criminal Science and
Technology, Railway Police College, Zhengzhou 450053, China
| | - Jing-Wei Wan
- Center
for Traffic Evidence Technology, Department of Criminal Science and
Technology, Railway Police College, Zhengzhou 450053, China
- Institute
of Public Safety, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng-He Zhou
- Key
Laboratory of Applied Chemistry of Chongqing Municipality, School
of Chemistry and Chemical Engineering, Southwest
University, Chongqing 400715, China
| |
Collapse
|
5
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
6
|
Chen LJ, He JT, Pan M, Liu JL, Zhang KK, Li JH, Wang LB, Xu LL, Chen YK, Zhang QY, Li DR, Xu JT, Xie XL. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol 2021; 12:716703. [PMID: 34381368 PMCID: PMC8350338 DOI: 10.3389/fphar.2021.716703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is a major psychostimulant drug of abuse worldwide, and its neurotoxicity has been studied extensively. In addition to neurotoxicity, METH can also induce hepatotoxicity. The underlying mechanism of intestinal microorganisms in METH-induced hepatotoxicity remains unclear. In this study, mice have received antibiotics intragastrically or PBS once each day for 1 week, followed by METH or saline. The antibiotics attenuated METH-induced hepatotoxicity as evidenced by histopathological observation and biochemical analysis; furthermore, they alleviated METH-induced oxidative stress. The effect of antibiotics on METH-induced hepatotoxicity was investigated using RNA-sequencing (RNA-seq). The RNA-seq results demonstrated that antibiotics could regulate 580 differentially expressed genes (DEGs), of which 319 were upregulated after METH treatment and then downregulated with antibiotic pretreatment and 237 were first downregulated after METH administration and then upregulated after antibiotic pretreatment, in addition to 11 upregulated and 13 downregulated ones simultaneously in METH and antibiotic-pretreated groups. RNA-seq analyses revealed that TLR4 is one of the hub genes. Western blot analysis indicated that antibiotics inhibited the increase of TLR4, MyD88 and Traf6 induced by METH. This research suggests that antibiotics may play an important role in preventing METH-induced liver injury by regulating oxidative stress and TLR4/MyD88/Traf6 axis, though further investigation is required.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China
| | - Ming Pan
- Department of Anesthesiology, Dalian Municipal Central Hospital, Dalian, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Dong-Ri Li
- Department of Forensic Evidence Science, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhang KK, Wang H, Qu D, Chen LJ, Wang LB, Li JH, Liu JL, Xu LL, Yoshida JS, Xu JT, Xie XL, Li DR. Luteolin Alleviates Methamphetamine-Induced Hepatotoxicity by Suppressing the p53 Pathway-Mediated Apoptosis, Autophagy, and Inflammation in Rats. Front Pharmacol 2021; 12:641917. [PMID: 33679421 PMCID: PMC7933587 DOI: 10.3389/fphar.2021.641917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Misuse of the psychostimulant methamphetamine (METH) could induce serious hepatotoxicity. Our previous study revealed the effects of luteolin on alleviating METH-induced hepatotoxicity, however, the detailed mechanisms have not been elucidated. In this study, rats were orally pretreated with 100 mg/kg luteolin or sodium dodecyl sulfate water, and then METH (15 mg/kg, intraperitoneal [i.p.]) or saline was administered. Histopathological and biochemical analyses were used to determine the alleviative effects of luteolin. Based on the RNA-sequencing data, METH induced 1859 differentially expressed genes (DEGs) in comparison with the control group, which were enriched into 11 signaling pathways. Among these DEGs, 497 DEGs could be regulated through luteolin treatment and enriched into 16 pathways. The p53 signaling pathway was enriched in both METH administered and luteolin pretreated rats. Meanwhile, luteolin significantly suppressed METH-induced elevation of p53, caspase9, caspase3, cleaved caspase3, the ratio of Bax/Beclin-2, as well as autophagy-related Beclin-1, Atg5, and LC3-II. Luteolin also relieved METH-induced hepatotoxicity by decreasing inflammation factors, including TNF-α, IL-1β, and IL-18. Moreover, the levels of PI3K, p-Akt, and the normalized ratio of p-Akt/Akt declined after METH administration, whereas luteolin pretreatment failed to reverse these effects. Our results suggest that luteolin alleviates METH-induced hepatic apoptosis, autophagy, and inflammation through repressing the p53 pathway. It further illustrates the protective mechanisms of luteolin on METH-induced hepatotoxicity and provides a research basis for clinical treatment.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dong Qu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Jing-Tao Xu
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, Shanghai, China.,Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dong-Ri Li
- Department of Forensic Evidence Science, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chen G, Wei X, Xu X, Yu G, Yong Z, Su R, Tao L. Methamphetamine Inhibits Long-Term Memory Acquisition and Synaptic Plasticity by Evoking Endoplasmic Reticulum Stress. Front Neurosci 2021; 14:630713. [PMID: 33519373 PMCID: PMC7840888 DOI: 10.3389/fnins.2020.630713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (MA), an illicit drug abused worldwide, leads to cognitive impairment and memory loss. However, the detailed mechanisms of MA-induced neurologic impairment are still unclear. The present study aimed to investigate the mechanisms of MA-induced inhibition of memory acquisition from the perspective of endoplasmic reticulum (ER) stress. ER stress, caused by the accumulation of wrongly folded proteins in the ER, is important for new protein synthesis, which further influence the formation of long-term memory. A subacute MA poisoning model of mice was established and several behavioral experiments were performed, including elevated plus maze, Morris water maze, electro-stimulus Y-maze, and novel object recognition tasks. The present results suggested that 4 days exposure to MA induced significant memory loss. Whereas, this damage to memory formation could be protected when mice were pre-treated with ER stress inhibitor, tauroursodeoxycholic acid (TUDCA). The results of Western blotting showed that subacute exposure to MA increased the expression levels of ER stress marker proteins, such as binding immunoglobulin protein, phosphorylated eukaryotic translation initiation factor 2α, cyclic AMP-dependent transcription factor (ATF)-4, ATF-6, and CCAAT-enhancer binding protein homologous protein. Meanwhile, the enhanced expression levels of these proteins were reversed by TUDCA, indicating that MA administration induced memory loss by evoking ER stress in the hippocampus. We also found that MA inhibited the induction of long-term potentiation (LTP) in the hippocampus. Nevertheless, LTP could be induced when mice were pre-treated with TUDCA. In conclusion, MA inhibited long-term memory acquisition and synaptic plasticity via ER stress.
Collapse
Affiliation(s)
- Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | | | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zheng Yong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|