1
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
2
|
Dong W, Chen J, Liao X, Chen X, Huang L, Huang J, Huang R, Zhong S, Zhang X. Biodiversity, Distribution and Functional Differences of Fungi in Four Species of Corals from the South China Sea, Elucidated by High-Throughput Sequencing Technology. J Fungi (Basel) 2024; 10:452. [PMID: 39057337 PMCID: PMC11278478 DOI: 10.3390/jof10070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recent studies have predominantly spotlighted bacterial diversity within coral microbiomes, leaving coral-associated fungi in the shadows of scientific inquiry. This study endeavors to fill this knowledge gap by delving into the biodiversity, distribution and functional differences of fungi associated with soft corals Cladiella krempfi and Sarcophyton tortuosum, gorgonian coral Dichotella gemmacea and stony coral Favia speciosa from the South China Sea. Leveraging high-throughput sequencing of fungal internal transcribed spacer-1 (ITS1) region of the rRNA gene, a total of 431 fungal amplicon sequence variants (ASVs) were identified in this study, which indicated that a large number of fungal communities were harbored in the South China Sea corals. Noteworthy among our findings is that 10 fungal genera are reported for the first time in corals, with Candolleomyces, Exophiala, Fomitopsis, Inaequalispora, Kneiffiella, Paraphaeosphaeria, and Yamadazyma belonging to the Ascomycota, and Cystobasidium, Psathyrella, and Solicoccozyma to the Basidiomycota. Moreover, significant differences (p < 0.05) of fungal communities were observed among the various coral species. In particular, the gorgonian coral D. gemmacea emerged as a veritable haven for fungal diversity, boasting 307 unique ASVs. Contrastingly, soft corals S. tortuosum and C. krempfi exhibited modest fungal diversity, with 36 and 21 unique ASVs, respectively, while the stony coral F. speciosa hosted a comparatively sparse fungal community, with merely 10 unique ASVs in total. These findings not only provide basic data on fungal diversity and function in the South China Sea corals, but also underscore the imperative of nuanced conservation and management strategies for coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiatao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Liyu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Jiayu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| |
Collapse
|
3
|
Awada B, Chahine DA, Derbaj G, Khalek PA, Awad MK, Fayad AA. Antimicrobial Natural Products Derived from Microorganisms Inhabiting the MENA Region. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231154989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Objective/Background Natural products (NPs) derived from microorganisms are the basis of a plethora of clinically utilized medications, namely, antimicrobial remedies. Although these secondary metabolites have been extensively explored all over the planet, they remain understudied in the Middle East and North Africa (MENA) region. Methods A literature search was conducted to first find NPs that were isolated from environmental fungi and bacteria that inhabit the soils and seawater of the MENA region. Then, purified molecules with biological activity against pathogenic bacteria, biofilms, fungi, and parasites were described in terms of structure, function, and location. Moreover, the methods that could be used to ameliorate the discovery of novel NPs from this region were investigated. Results A multitude of antimicrobial molecules from various chemical classes were found to be derived from the environmental microbes of MENA. Although many were rediscovered, some represented novel structural scaffolds for novel families of antimicrobial agents. Additionally, the geographical distribution showed a high number of these NPs were unraveled in a restricted area leaving much of MENA untapped. Furthermore, as relatively traditional and low-efficiency methods were typically used in the discovery process, advanced high-throughput techniques were suggested to enhance this practice at the regional level. Conclusion MENA represents a fairly unexploited region where antimicrobial drug discovery could be performed comprehensively through the concomitant exploration of untouched geographical locations and advanced molecular techniques.
Collapse
Affiliation(s)
- Bassel Awada
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Dany Abi Chahine
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
- Laboratory of Biodiversity and Functional Genomics, UR EGP, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Ghada Derbaj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Pascal Abdel Khalek
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, UR EGP, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Antoine Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Salem SH, El-Maraghy SS, Abdel-Mallek AY, Abdel-Rahman MAA, Hassanein EHM, Al-Bedak OA, El-Aziz FEZAA. The antimicrobial, antibiofilm, and wound healing properties of ethyl acetate crude extract of an endophytic fungus Paecilomyces sp. (AUMC 15510) in earthworm model. Sci Rep 2022; 12:19239. [PMID: 36357560 PMCID: PMC9649741 DOI: 10.1038/s41598-022-23831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The endophytic fungus Paecilomyces sp. (AUMC 15510) was isolated from healthy stem samples of the Egyptian medicinal plant Cornulaca monacantha. We used GC-MS and HPLC analysis to identify the bioactive constituents of ethyl acetate crude extract of Paecilomyces sp. (PsEAE). Six human microbial pathogens have been selected to evaluate the antimicrobial activity of PsEAE. Our data showed that the extract has significant antimicrobial activity against all tested pathogens. However, the best inhibitory effect was observed against Bacillus subtilis ATCC 6633 and Pseudomonas aeruginosa ATCC 90274 with a minimum inhibitory concentration (MIC) of 3.9 μg/ml and minimum bactericidal concentration (MBC) of 15.6 μg/ml, for both pathogens. Also, PsEAE exerts a significant inhibition on the biofilm formation of the previously mentioned pathogenic strains. In addition, we evaluated the wound healing efficiency of PsEAE on earthworms (Lumbricus castaneus) as a feasible and plausible model that mimics human skin. Interestingly, PsEAE exhibited a promising wound healing activity and enhanced wound closure. In conclusion, Paecilomyces sp. (AUMC 15510) could be a sustainable source of antimicrobial agents and a potential therapeutic target for wound management.
Collapse
Affiliation(s)
- Shimaa H Salem
- Fungal Physiology Laboratory, Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Saad S El-Maraghy
- Fungal Physiology Laboratory, Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ahmed Y Abdel-Mallek
- Mycology Laboratory, Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, Egypt
| | - Osama A Al-Bedak
- Assiut University Mycological Centre (AUMC), Assiut University, Assiut, Egypt
| | | |
Collapse
|
5
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
EL-Shahid ZA, Abd EL-Hady FK, Fayad W, Abdel-Aziz MS, Abd EL-Azeem EM, Ahmed EK. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Potentials Using the One Strain Many Compounds Technique for Red Sea Soft Corals Associated Fungi’ Secondary Metabolites and Chemical Composition Correlations. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2021; 11:467-489. [DOI: 10.1080/22311866.2021.1978862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 09/01/2023]
Affiliation(s)
- Zeinab A. EL-Shahid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Faten K. Abd EL-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, Egypt
| | | | | | - Emad K. Ahmed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Ochraceopyronide, a Rare α-Pyrone-C-lyxofuranoside from a Soil-Derived Fungus Aspergillus ochraceopetaliformis. Molecules 2021; 26:molecules26133976. [PMID: 34209863 PMCID: PMC8271807 DOI: 10.3390/molecules26133976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2–5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds—isolated for the first time from A. ochraceopetaliformis—were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.
Collapse
|
8
|
Mai PY, Le Goff G, Poupon E, Lopes P, Moppert X, Costa B, Beniddir MA, Ouazzani J. Solid-Phase Extraction Embedded Dialysis (SPEED), an Innovative Procedure for the Investigation of Microbial Specialized Metabolites. Mar Drugs 2021; 19:md19070371. [PMID: 34206861 PMCID: PMC8304039 DOI: 10.3390/md19070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.
Collapse
Affiliation(s)
- Phuong-Y. Mai
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Géraldine Le Goff
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Erwan Poupon
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Philippe Lopes
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Xavier Moppert
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Bernard Costa
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Mehdi A. Beniddir
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Jamal Ouazzani
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Correspondence: ; Tel.: +33-6-82-81-65-90
| |
Collapse
|