1
|
Wu Y, Ma Y, Zhong W, Shen H, Ye J, Du S, Li P. Alleviation of endothelial dysfunction of Pheretima guillemi (Michaelsen)-derived protein DPf3 in ponatinib-induced thrombotic zebrafish and mechanisms explored through ox-LDL-induced HUVECs and TMT-based proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117669. [PMID: 38159828 DOI: 10.1016/j.jep.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.
Collapse
Affiliation(s)
- Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huijuan Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Okeke ES, Luo M, Feng W, Zhang Y, Mao G, Chen Y, Zeng Z, Qian X, Sun L, Yang L, Wu X. Transcriptomic profiling and differential analysis revealed the neurodevelopmental toxicity mechanisms of zebrafish (Danio rerio) larvae in response to tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109382. [PMID: 35640788 DOI: 10.1016/j.cbpc.2022.109382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Tetrabromobisphenol A bis(2-hydroxyetyl) ether (TBBPA-DHEE) is among the main derivatives of Tetrabromobisphenol A (TBBPA). Result from previous study showed that TBBPA-DHEE can cause neurotoxicity in rat. In this study, zebrafish larvae were used for evaluation of TBBPA-DHEE-induced developmental toxicity, apoptosis, oxidative stress and the potential molecular mechanisms of action. Our result showed that TBBPA-DHEE exposure caused a significant concentration-dependent developmental toxicity endpoints like death rate, malformation rate, growth rate. TBBPA-DHEE altered locomotor and enzymes activities of larvae and caused apoptosis within the brain indicating the potential TBBPA-DHEE-induced cardiac, brain impairment in the zebrafish larvae. Our transcriptomic analysis shows that 691 genes were differentially expressed (DEGs) (539 upregulated, 152 downregulated). The KEGG and GO enrichment pathway analysis shows that the DEGs were involved in development, immunity, enzyme activity. Our study provides novel evidence on the neurodevelopmental toxicity and toxicity mechanism of TBBPA-DHEE which are vital for assessment of the environmental toxicity and risk assessment of the chemical.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, FBS & Natural Science Unit, SGS, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yiran Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhengjia Zeng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lei Sun
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Functional Identification of Complement Factor D and Analysis of Its Expression during GCRV Infection in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2021; 22:ijms222112011. [PMID: 34769442 PMCID: PMC8584590 DOI: 10.3390/ijms222112011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.
Collapse
|
4
|
Jagau H, Packirisamy S, Brandon K, Herwald H. Plasma Protein Layer Concealment Protects Streptococcus pyogenes From Innate Immune Attack. Front Cell Infect Microbiol 2021; 11:633394. [PMID: 34094995 PMCID: PMC8173628 DOI: 10.3389/fcimb.2021.633394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Early recognition and elimination of invading pathogens by the innate immune system, is one of the most efficient host defense mechanisms preventing the induction of systemic complications from infection. To this end the host can mobilize endogenous antimicrobials capable of killing the intruder by perforating the microbial cell wall. Here, we show that Streptococcus pyogenes can shield its outer surface with a layer of plasma proteins. This mechanism protects the bacteria from an otherwise lytic attack by LL-37 and extracellular histones, allowing the bacteria to adjust their gene regulation to an otherwise hostile environment.
Collapse
Affiliation(s)
- Hilger Jagau
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Swathi Packirisamy
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Kyle Brandon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Holding ML, Strickland JL, Rautsaw RM, Hofmann EP, Mason AJ, Hogan MP, Nystrom GS, Ellsworth SA, Colston TJ, Borja M, Castañeda-Gaytán G, Grünwald CI, Jones JM, Freitas-de-Sousa LA, Viala VL, Margres MJ, Hingst-Zaher E, Junqueira-de-Azevedo ILM, Moura-da-Silva AM, Grazziotin FG, Gibbs HL, Rokyta DR, Parkinson CL. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc Natl Acad Sci U S A 2021; 118:e2015579118. [PMID: 33875585 PMCID: PMC8092465 DOI: 10.1073/pnas.2015579118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Erich P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Timothy J Colston
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | | | - Jason M Jones
- HERP.MX A.C., Villa del Álvarez, Colima 28973, Mexico
| | | | - Vincent Louis Viala
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634
| |
Collapse
|
6
|
Keestra SM, Male V, Salali GD. Out of balance: the role of evolutionary mismatches in the sex disparity in autoimmune disease. Med Hypotheses 2021; 151:110558. [PMID: 33964604 DOI: 10.1016/j.mehy.2021.110558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022]
Abstract
Over the past century autoimmune disease incidence has increased rapidly in (post-) industrialised, affluent societies, suggesting that changes in ecology and lifestyle are driving this development. Epidemiological studies show that (i) 80% of autoimmune disease patients are female, (ii) autoimmune diseases co-occur more often in women, and (iii) the incidence of some autoimmune diseases is increasing faster in women than in men. The female preponderance in autoimmunity is most pronounced between puberty and menopause, suggesting that diverging sex hormone levels during the reproductive years are implicated in autoimmune disease development. Using an evolutionary perspective, we build on the hypotheses that female immunity is cyclical in menstruating species and that natural selection shaped the female immune system to optimise the implantation and gestation of a semi-allogeneic foetus. We propose that cyclical immunomodulation and female immune tolerance mechanisms are currently out of balance because of a mismatch between the conditions under which they evolved and (post-)industrialised, affluent lifestyles. We suggest that current changes in autoimmune disease prevalence may be caused by increases in lifetime exposure to cyclical immunomodulation and ovarian hormone exposure, reduced immune challenges, increased reproductive lifespan, changed reproductive patterns, and enhanced positive energy balance associated with (post-)industrialised, affluent lifestyles. We discuss proximate mechanisms by which oestrogen and progesterone influence tolerance induction and immunomodulation, and review the effect of the menstrual cycle, pregnancy, and contraceptive use on autoimmune disease incidence and symptoms.
Collapse
Affiliation(s)
- Sarai M Keestra
- Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Global Health & Development, London School of Hygiene and Tropical Medicine, UK.
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | | |
Collapse
|
7
|
Gao J, Long L, Xu F, Feng L, Liu Y, Shi J, Gong Q. Icariside II, a phosphodiesterase 5 inhibitor, attenuates cerebral ischaemia/reperfusion injury by inhibiting glycogen synthase kinase-3β-mediated activation of autophagy. Br J Pharmacol 2020; 177:1434-1452. [PMID: 31658364 PMCID: PMC7056470 DOI: 10.1111/bph.14912] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Cerebral ischaemia/reperfusion causes exacerbated neuronal damage involving excessive autophagy and neuronal loss. The present study was designed to investigate the effect of icariside II, one of main active ingredients of Herba Epimedii on this loss and whether this is related to its PDE 5 inhibitory action. Experimental Approach Focal cerebral ischaemia was induced in the rat by transient middle cerebral artery occlusion over 2 hr, followed by reperfusion with icariside II, 3‐methylamphetamine or rapamycin. The effect of icariside II was determined measuring behaviour changes and the size of the infarction. The expressions of PDE 5, autophagy‐related proteins and the level of phosphorylation of glycogen synthase kinase‐3β (GSK‐3β) were determined. Cultured primary cortical neurons were subjected to oxygen and glucose deprivation followed by reoxygenation in the presence and absence of icariside II. A surface plasmon resonance assay and molecular docking were used to explore the interactions of icariside II with PDE 5 or GSK‐3β. Key Results Icariside II not only protected against induced ischaemic reperfusion injury in rats but also attenuated such injury in primary cortical neurons. The neuroprotective effects of icariside II on such injury were attributed to interfering with the PKG/GSK‐3β/autophagy axis by directly bounding to PDE 5 and GSK‐3β. Conclusions and Implications These findings indicate that icariside II attenuates cerebral I/R‐induced injury via interfering with PKG/GSK‐3β/autophagy axis. This study raises the possibility that icariside II and other PDE 5 inhibitors maybe effective in the treatment ischaemia stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Long Long
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Linying Feng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Yuangui Liu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| |
Collapse
|
8
|
Drosophila melanogaster Responses against Entomopathogenic Nematodes: Focus on Hemolymph Clots. INSECTS 2020; 11:insects11010062. [PMID: 31963772 PMCID: PMC7023112 DOI: 10.3390/insects11010062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022]
Abstract
Several insect innate immune mechanisms are activated in response to infection by entomopathogenic nematodes (EPNs). In this review, we focus on the coagulation of hemolymph, which acts to stop bleeding after injury and prevent access of pathogens to the body cavity. After providing a general overview of invertebrate coagulation systems, we discuss recent findings in Drosophila melanogaster which demonstrate that clots protect against EPN infections. Detailed analysis at the cellular level provided insight into the kinetics of the secretion of Drosophila coagulation factors, including non-classical modes of secretion. Roughly, clot formation can be divided into a primary phase in which crosslinking of clot components depends on the activity of Drosophila transglutaminase and a secondary, phenoloxidase (PO)-dependent phase, characterized by further hardening and melanization of the clot matrix. These two phases appear to play distinct roles in two commonly used EPN infection models, namely Heterorhabditis bacteriophora and Steinernema carpocapsae. Finally, we discuss the implications of the coevolution between parasites such as EPNs and their hosts for the dynamics of coagulation factor evolution.
Collapse
|
9
|
Zhao L, Sun L, Zheng X, Liu J, Zheng R, Yang R, Wang Y. Alterations in complement and coagulation pathways of human placentae subjected to in vitro fertilization and embryo transfer in the first trimester. Medicine (Baltimore) 2019; 98:e17031. [PMID: 31689742 PMCID: PMC6946305 DOI: 10.1097/md.0000000000017031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mechanisms underlying the potential risks of in vitro fertilization and embryo transfer (IVF-ET) have not been fully elucidated. The aim of this study was to explore changes in the complement and coagulation pathways in placentae subjected to IVF-ET in the first trimester compared to placentae from normal pregnancies. Four placenta samples in the first trimester were obtained from patients undergoing IVF-ET owing to oviductal factors only. An additional 4 control placentae were obtained from volunteers with normal pregnancies. A GeneChip Affymetrix HG-U133 Plus 2.0 Array was utilized to analyze the changes in gene expression between the normal and IVF-ET placentae. Differentially expressed genes (DEGs) were analyzed using the Database for Annotation and Visualization and Integrated Discovery bioinformatics resource, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Using real-time PCR, we confirmed the obtained microarray data in 10 dysregulated genes. Five of the gene products were further analyzed by immunohistochemistry (IHC) to determine their protein expression and localization. A total of fifty DEGs were identified in the complement and coagulation pathways in the IVF-ET treated placentae: 38 upregulated and 12 down-regulated. KEGG pathway analysis indicated that IVF-ET manipulation substantially over-activated the coagulation and complement pathways, while urokinase plasminogen activator- and urokinase plasminogen activator receptor-mediated trophoblastic invasion and tissue remodeling were inhibited. Furthermore, the 5 proteins analyzed by IHC were found to be localized specifically to the placenta. This is the first study to compare DEGs relating to the placental complement and coagulation pathways from patients undergoing IVF-ET treatment compared to those undergoing normal pregnancy. These findings identified valuable biomarkers and potential novel therapeutic targets to combat the unfavorable effects of IVF-ET.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital
| | - Lifang Sun
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital
| | - Xiuli Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital
| | - Jingfang Liu
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital
| | - Rong Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital
| | - Rui Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Ali MN, Kasetty G, Elvén M, Alyafei S, Jovic S, Egesten A, Herwald H, Schmidtchen A, Papareddy P. TFPI-2 Protects Against Gram-Negative Bacterial Infection. Front Immunol 2018; 9:2072. [PMID: 30254643 PMCID: PMC6141739 DOI: 10.3389/fimmu.2018.02072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) has previously been characterized as an endogenous anticoagulant. TFPI-2 is expressed in the vast majority of cells, mainly secreted into the extracellular matrix. Recently we reported that EDC34, a C-terminal peptide derived from TFPI-2, exerts a broad antimicrobial activity. In the present study, we describe a previously unknown antimicrobial mode of action for the human TFPI-2 C-terminal peptide EDC34, mediated via binding to immunoglobulins of the classes IgG, IgA, IgE, and IgM. In particular the interaction of EDC34 with the Fc part of IgG is of importance since this boosts interaction between the immunoglobulin and complement factor C1q. Moreover, we find that the binding increases the C1q engagement of the antigen-antibody interaction, leading to enhanced activation of the classical complement pathway during bacterial infection. In experimental murine models of infection and endotoxin challenge, we show that TFPI-2 is up-regulated in several organs, including the lung. Correspondingly, TFPI-2−/− mice are more susceptible to pulmonary Pseudomonas aeruginosa bacterial infection. No anti-coagulant role of TFPI-2 was observed in these models in vivo. Furthermore, in vivo, the mouse TFPI-2-derived C-terminal peptide VKG24, a homolog to human EDC34 is protective against systemic Escherichia coli bacterial infection. Moreover, in sputum from cystic fibrosis patients TFPI-2 C-terminal fragments are generated and found associated with immunoglobulins. Together our data describe a previously unknown host defense mechanism and therapeutic importance of TFPI-2 against invading Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Mohamad N Ali
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gopinath Kasetty
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Elvén
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Saud Alyafei
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sandra Jovic
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Arne Egesten
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Dermatology, LKCMedicine, Nanyang Technological University, Singapore, Singapore.,Department of Biomedical Sciences, Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|