1
|
Yin F, Chen Y, Zhang H, Zhao H, Li X, Wang Z, Meng W, Zhao J, Tang L, Li Y, Li J, Wang X. Lactobacillus paracasei Expressing Porcine Trefoil Factor 3 and Epidermal Growth Factor: A Novel Approach for Superior Mucosal Repair. Vet Sci 2025; 12:365. [PMID: 40284867 PMCID: PMC12031595 DOI: 10.3390/vetsci12040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Trefoil factor 3 (TFF3) and epidermal growth factor (EGF) exert a promotive effect on the functions of intestinal epithelial cells and offer protection to the intestinal mucosa. Lactobacillus paracasei can ameliorate intestinal mucosal damage. In this study, pPG-pTFF3/27-2, pPG-pEGF/27-2, and pPG-pTE/27-2 were constructed to express porcine TFF3, EGF, and a fusion protein (pTE). Functional assays showed they promoted Immortalized Porcine Enterocyte Cell line J2 (IPEC-J2) proliferation and migration, with pTE having a greater migratory effect. In dextran sulfate sodium (DSS)-induced colitis mice, oral administration of pPG-pTE/27-2 reduced colitis, improved mucosal integrity, increased the expression of tight-junction proteins and the serum level of Interleukin-10 (IL-10), and decreased the levels of pro-inflammatory Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interleukin-1β (IL-1β). These results imply that recombinant L. paracasei 27-2 strains engineered to express pTFF3 and pEGF represent a promising approach for augmenting intestinal epithelial cell function and facilitating mucosal restitution, and they possess significant potential in the treatment of intestinal mucosal injury and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Huijun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Hongzhe Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xuenan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Zi Wang
- Tongliao Institute of Animal Husbandry and Veterinary Science, Tongliao 028000, China;
| | - Weijing Meng
- Tongliao Agricultural and Animal Husbandry Development Center, Tongliao 028000, China;
| | - Jie Zhao
- Nanjing Dr. Vet Health Management Co., Ltd., Nanjing 210000, China;
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Tongliao Agricultural and Animal Husbandry Development Center, Tongliao 028000, China;
| |
Collapse
|
2
|
Yan W, Huang S, Zhang L, Yang Q, Liu S, Wang Z, Chu Q, Tian M, Zhao L, Sun Y, Lei C, Wang H, Yang X. Virus-like Particles vaccine based on co-expression of G5 Porcine rotavirus VP2-VP6-VP7 induces a powerful immune protective response in mice. Vet Microbiol 2024; 298:110241. [PMID: 39226763 DOI: 10.1016/j.vetmic.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Porcine rotavirus (PoRV), a member of the Reoviridae family, constitutes a principal etiological agent of acute diarrhea in piglets younger than eight weeks of age, and it is associated with considerable morbidity and mortality within the swine industry. The G5 genotype rotavirus strain currently predominates in circulation. To develop a safe and effective porcine rotavirus vaccine, we generated an insect cell-baculovirus expression system, and successfully expressed these three viral proteins and assembled them into virus-like particles (VLPs) co-displaying VP2, VP6, and VP7. Transmission electron microscopy (TEM) analysis revealed that the VP2-VP6-VP7 VLPs exhibited a "wheeled" morphology resembling that of native rotavirus particles, with an estimated diameter of approximately 65 nm. To evaluate the immunogenicity and protective efficacy of these VP2-VP6-VP7 VLPs, we immunized BALB/C mice with four escalating doses of the VLPs, ranging from 5 to 40 μg of VLP protein per dose. ELISA-based assessments of PoRV-specific antibodies and T cell cytokines, including IL-4, IL-2, and IFN-γ, demonstrate that immunization with VP2-VP6-VP7 VLPs can effectively elicit both humoral and cellular immune responses in mice, resulting in a notable induction of neutralizing antibodies. On days 4, 6, 8, and 10 post-infection (dpi), the VLP-vaccinated group exhibited significantly reduced levels of PoRV RNA copy numbers when compared to the PBS controls. Histological examination of the duodenum, ileum, and kidneys revealed that VP2-VP6-VP7 VLPs provided effective protection against PoRV induced intestinal injury. Collectively, these findings indicate that the VLPs generated in this study possess strong immunogenicity and suggest the considerable promise of the VLP-based vaccine candidate in the prevention and containment of Porcine Rotavirus infections.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China; Sichuan Animal Science Academy (SASA), Chengdu 610066, China
| | - Lan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Zheng Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Qinyuan Chu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Mingyue Tian
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Lijun Zhao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yue Sun
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
3
|
Li F, Zhao H, Sui L, Yin F, Liu X, Guo G, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Assessing immunogenicity of CRISPR-NCas9 engineered strain against porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2024; 108:248. [PMID: 38430229 PMCID: PMC10908614 DOI: 10.1007/s00253-023-12989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 03/03/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.
Collapse
Affiliation(s)
- Fengsai Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinzi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guihai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
4
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
5
|
Lv X, Li Y, Xiu X, Liao C, Xu Y, Liu Y, Li J, Du G, Liu L. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 2023; 69:108261. [PMID: 37741424 DOI: 10.1016/j.biotechadv.2023.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chao Liao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Mu Y, Zhang C, Li T, Jin FJ, Sung YJ, Oh HM, Lee HG, Jin L. Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus. Int J Mol Sci 2022; 23:12852. [PMID: 36361647 PMCID: PMC9656040 DOI: 10.3390/ijms232112852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/25/2023] Open
Abstract
Lactobacillus, a genus of lactic acid bacteria, plays a crucial function in food production preservation, and probiotics. It is particularly important to develop new Lactobacillus strains with superior performance by gene editing. Currently, the identification of its functional genes and the mining of excellent functional genes mainly rely on the traditional gene homologous recombination technology. CRISPR/Cas9-based genome editing is a rapidly developing technology in recent years. It has been widely applied in mammalian cells, plants, yeast, and other eukaryotes, but less in prokaryotes, especially Lactobacillus. Compared with the traditional strain improvement methods, CRISPR/Cas9-based genome editing can greatly improve the accuracy of Lactobacillus target sites and achieve traceless genome modification. The strains obtained by this technology may even be more efficient than the traditional random mutation methods. This review examines the application and current issues of CRISPR/Cas9-based genome editing in Lactobacillus, as well as the development trend of CRISPR/Cas9-based genome editing in Lactobacillus. In addition, the fundamental mechanisms of CRISPR/Cas9-based genome editing are also presented and summarized.
Collapse
Affiliation(s)
- Yulin Mu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chengxiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Taihua Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yun-Ju Sung
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Long Jin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|