1
|
Timofte DV, Tudor RC, Mocanu V, Labusca L. Obesity, Osteoarthritis, and Myokines: Balancing Weight Management Strategies, Myokine Regulation, and Muscle Health. Nutrients 2024; 16:4231. [PMID: 39683624 PMCID: PMC11644804 DOI: 10.3390/nu16234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity and osteoarthritis (OA) are increasingly prevalent conditions that are intricately linked, with each exacerbating the other's pathogenesis and worsening patient outcomes. This review explores the dual impact of obesity on OA, highlighting the role of excessive weight in aggravating joint degeneration and the limitations OA imposes on physical activity, which further perpetuates obesity. The role of muscle tissue, particularly the release of myokines during physical activity, is examined in the context of OA and obesity. Myokines such as irisin, IL-6, and myostatin are discussed for their roles in metabolic regulation, inflammation, and tissue repair, offering insights into their potential therapeutic targets. This review emphasizes the importance of supervised weight management methods in parallel with muscle rehabilitation in improving joint health and metabolic balance. The potential for myokine modulation through targeted exercise and weight loss interventions to mitigate the adverse effects of obesity and OA is also discussed, suggesting avenues for future research and therapy development to reduce the burden of these chronic conditions.
Collapse
Affiliation(s)
- Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
| | - Razvan Cosmin Tudor
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
- Dr. Iacob Czihac Military Emergency Hospital Iasi, General Henri Mathias Berthelot Str. 7-9, 700483 Iași, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences II (Pathophysiology), Center for Obesity BioBehavioral Experimental Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Labusca
- Department of Orthopedics and Traumatology, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania;
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania
| |
Collapse
|
2
|
Drobner J, Portal D, Runcie K, Yang Y, Singer EA. Systemic Treatment for Advanced and Metastatic Non-Clear Cell Renal Cell Carcinoma: Examining Modern Therapeutic Strategies for a Notoriously Challenging Malignancy. J Kidney Cancer VHL 2023; 10:37-60. [PMID: 37789902 PMCID: PMC10542704 DOI: 10.15586/jkcvhl.v10i3.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023] Open
Abstract
Non-clear cell renal cell carcinoma (nccRCC) is a heterogeneous group of malignancies that represents 25% of renal cell carcinoma (RCC) cases. Treatment for non-clear cell histologies is mostly based on evidence from small phase II clinical trials or extrapolated from successful therapies in clear cell RCC because of the low incidence of non-clear cell pathology. Advances in genomic profiling have improved clinicians' understanding of molecular targets for nccRCC, such as altered mesenchymal epithelial transition (MET) gene status and fumarate hydratase (FH) gene inactivation, but patient outcomes remain poor and optimal management of this disease remains unclear. This review assesses outcomes by histologic subtype from 27 prospective and 13 ongoing clinical trials to identify therapeutic strategies for advanced or metastatic nccRCC. Vascular endothelial growth factor tyrosine kinase inhibitors (TKI), such as sunitinib, and mammalian target of rapamycin (mTOR) inhibitors, such as everolimus, have demonstrated efficacy and remain viable treatment options, with a preference for sunitinib. However, everolimus is preferred in patients with chromophobe RCC because folliculin (FLCN) gene mutations upregulate the mTOR pathway. Novel TKIs, such as cabozantinib, show improved outcomes in patients with papillary RCC because of targeted MET inhibition. Platinum-based chemotherapy continues to be the recommended treatment strategy for collecting duct and medullary RCC. Clinically meaningful antitumor activity has been observed across all non-clear cell histologies for immune checkpoint inhibitors, such as nivolumab, pembrolizumab, and ipilimumab. Ongoing trials are evaluating novel tyrosine kinase inhibitor and immunotherapy combination regimens, with an emphasis on the promising MET-inhibitor cabozantinib and pembrolizumab plus lenvatinib.
Collapse
Affiliation(s)
- Jake Drobner
- Division of Urology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, USA
| | - Daniella Portal
- Division of Urology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, USA
| | - Karie Runcie
- Division of Hematology/Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Yuanquan Yang
- Genitourinary Oncology Section, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center-James Cancer Hospital, Columbus, OH, USA
| | - Eric A. Singer
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
3
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Rare Variants in Autophagy and Non-Autophagy Genes in Late-Onset Pompe Disease: Suggestions of Their Disease-Modifying Role in Two Italian Families. Int J Mol Sci 2021; 22:ijms22073625. [PMID: 33807278 PMCID: PMC8036926 DOI: 10.3390/ijms22073625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype–phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.
Collapse
|
5
|
Min H, Ma D, Zou W, Wu Y, Ding Y, Zhu C, Lin A, Song S, Liang Q, Chen B, Zhang B, Wan Y, Ye M, Pan Y, Wen Y, Yi L, Gao Q. FLCN-regulated miRNAs suppressed reparative response in cells and pulmonary lesions of Birt-Hogg-Dubé syndrome. Thorax 2020; 75:476-485. [PMID: 32184379 PMCID: PMC7279199 DOI: 10.1136/thoraxjnl-2019-213225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/21/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
Background Birt-Hogg-Dubé Syndrome (BHDS) characterised by skin fibrofolliculomas, kidney tumour and pulmonary cysts/pneumothorax is caused by folliculin (FLCN) germline mutations. The pathology of both neoplasia and focused tissue loss of BHDS strongly features tissue-specific behaviour of the gene. Isolated cysts/pneumothorax is the most frequent atypical presentation of BHDS and often misdiagnosed as primary spontaneous pneumothorax (PSP). Deferential diagnosis of BHDS with isolated pulmonary presentation (PSP-BHD) from PSP is essential in lifelong surveillance for developing renal cell carcinoma. Methods The expression profiles of microRNAs (miRNAs) in cystic lesions of PSP-BHD and PSP were determined via microarray. The selected upregulated miRNAs were further confirmed in the plasma of an expanded cohort of PSP-BHD patients by reverse transcription quantitative PCR (RT-qPCR). Their diagnostic accuracy was evaluated. Moreover, the cellular functions and targeted signalling pathways of FLCN-regulated miRNAs were assessed in various cell lines and in the lesion tissue contexts. Results Cystic lesions of PSP-BHD and PSP showed different miRNAs profiles with a significant upregulation of miR-424–5p and let-7d-5p in PSP-BHD. The combination of the two effectively predicted BHDS patients. In vitro studies revealed a suppressive effect of FLCN on miR-424–5p and let-7d-5p expressions specifically in lung epithelial cells. The ectopic miRNAs triggered epithelial apoptosis and epithelial transition of mesenchymal cells and suppressed the reparative responses in cells and tissues with FLCN deficiency. Conclusion The upregulation of miR-424–5p and let-7d-5p by FLCN deficiency occurred in epithelial cells and marked the PSP-BHD condition, which contributed to a focused degenerative pathology in the lung of PSP-BHD patients.
Collapse
Affiliation(s)
- Haiyan Min
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Wei Zou
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Yongzheng Wu
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yibing Ding
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Anqi Lin
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shiyu Song
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qiao Liang
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Bin Zhang
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yueming Wan
- Department of Pathology, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Minhua Ye
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yanqing Pan
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Yanting Wen
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Long Yi
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qian Gao
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China .,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
de Martín Garrido N, Aylett CHS. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. Front Cell Dev Biol 2020; 8:108. [PMID: 32195250 PMCID: PMC7063858 DOI: 10.3389/fcell.2020.00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
FLCN was identified as the gene responsible for Birt-Hogg-Dubé (BHD) syndrome, a hereditary syndrome associated with the appearance of familiar renal oncocytomas. Most mutations affecting FLCN result in the truncation of the protein, and therefore loss of its associated functions, as typical for a tumor suppressor. FLCN encodes the protein folliculin (FLCN), which is involved in numerous biological processes; mutations affecting this protein thus lead to different phenotypes depending on the cellular context. FLCN forms complexes with two large interacting proteins, FNIP1 and FNIP2. Structural studies have shown that both FLCN and FNIPs contain longin and differentially expressed in normal versus neoplastic cells (DENN) domains, typically involved in the regulation of small GTPases. Accordingly, functional studies show that FLCN regulates both the Rag and the Rab GTPases depending on nutrient availability, which are respectively involved in the mTORC1 pathway and lysosomal positioning. Although recent structural studies shed light on the precise mechanism by which FLCN regulates the Rag GTPases, which in turn regulate mTORC1, how FLCN regulates membrane trafficking through the Rab GTPases or the significance of the intriguing FLCN-FNIP-AMPK complex formation are questions that still remain unanswered. We discuss the recent progress in our understanding of FLCN regulation of both growth signaling and lysosomal positioning, as well as future approaches to establish detailed mechanisms to explain the disparate phenotypes caused by the loss of FLCN function and the development of BHD-associated and other tumors.
Collapse
Affiliation(s)
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Bulzu PA, Andrei AŞ, Salcher MM, Mehrshad M, Inoue K, Kandori H, Beja O, Ghai R, Banciu HL. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 2019; 4:1129-1137. [DOI: 10.1038/s41564-019-0404-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/08/2019] [Indexed: 11/09/2022]
|
8
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|