1
|
Whaby M, Ketavarapu G, Koide A, Mazzei M, Mintoo M, Glasser E, Patel U, Nasarre C, Sale MJ, McCormick F, Koide S, O'Bryan JP. Inhibition and degradation of NRAS with a pan-NRAS monobody. Oncogene 2024; 43:3489-3497. [PMID: 39379700 PMCID: PMC11584388 DOI: 10.1038/s41388-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
The RAS family GTPases are the most frequently mutated oncogene family in human cancers. Activating mutations in either of the three RAS isoforms (HRAS, KRAS, or NRAS) are found in nearly 20% of all human tumors with NRAS mutated in ~25% of melanomas. Despite remarkable advancements in therapies targeted against mutant KRAS, NRAS-specific pharmacologics are lacking. Thus, development of inhibitors of NRAS would address a critical unmet need to treating primary tumors harboring NRAS mutations as well as BRAF-mutant melanomas, which frequently develop resistance to clinically approved BRAF inhibitors through NRAS mutation. Building upon our previous studies with the monobody NS1 that recognizes HRAS and KRAS but not NRAS, here we report the development of a monobody that specifically binds to both GDP and GTP-bound states of NRAS and inhibits NRAS-mediated signaling in a mutation-agnostic manner. Further, this monobody can be formatted into a genetically encoded NRAS-specific degrader. Our study highlights the feasibility of developing NRAS selective inhibitors for therapeutic efforts.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mubashir Mintoo
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eliezra Glasser
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Unnatiben Patel
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Cecile Nasarre
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
2
|
de Jesus VHF, Mathias-Machado MC, de Farias JPF, Aruquipa MPS, Jácome AA, Peixoto RD. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers (Basel) 2023; 15:5015. [PMID: 37894382 PMCID: PMC10605759 DOI: 10.3390/cancers15205015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer-related mortality, and it is expected to play an even bigger part in cancer burden in the years to come. Despite concerted efforts from scientists and physicians, patients have experienced little improvement in survival over the past decades, possibly because of the non-specific nature of the tested treatment modalities. Recently, the discovery of potentially targetable molecular alterations has paved the way for the personalized treatment of PDAC. Indeed, the central piece in the molecular framework of PDAC is starting to be unveiled. KRAS mutations are seen in 90% of PDACs, and multiple studies have demonstrated their pivotal role in pancreatic carcinogenesis. Recent investigations have shed light on the differences in prognosis as well as therapeutic implications of the different KRAS mutations and disentangled the relationship between KRAS and effectors of downstream and parallel signaling pathways. Additionally, the recognition of other mechanisms involving KRAS-mediated pathogenesis, such as KRAS dosing and allelic imbalance, has contributed to broadening the current knowledge regarding this molecular alteration. Finally, KRAS G12C inhibitors have been recently tested in patients with pancreatic cancer with relative success, and inhibitors of KRAS harboring other mutations are under clinical development. These drugs currently represent a true hope for a meaningful leap forward in this dreadful disease.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil
| | | |
Collapse
|
3
|
Abuasaker B, Garrido E, Vilaplana M, Gómez-Zepeda JD, Brun S, Garcia-Cajide M, Mauvezin C, Jaumot M, Pujol MD, Rubio-Martínez J, Agell N. α4-α5 Helices on Surface of KRAS Can Accommodate Small Compounds That Increase KRAS Signaling While Inducing CRC Cell Death. Int J Mol Sci 2023; 24:ijms24010748. [PMID: 36614192 PMCID: PMC9821572 DOI: 10.3390/ijms24010748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
KRAS is the most frequently mutated oncogene associated with the genesis and progress of pancreatic, lung and colorectal (CRC) tumors. KRAS has always been considered as a therapeutic target in cancer but until now only two compounds that inhibit one specific KRAS mutation have been approved for clinical use. In this work, by molecular dynamics and a docking process, we describe a new compound (P14B) that stably binds to a druggable pocket near the α4-α5 helices of the allosteric domain of KRAS. This region had previously been identified as the binding site for calmodulin (CaM). Using surface plasmon resonance and pulldown analyses, we prove that P14B binds directly to oncogenic KRAS thus competing with CaM. Interestingly, P14B favors oncogenic KRAS interaction with BRAF and phosphorylated C-RAF, and increases downstream Ras signaling in CRC cells expressing oncogenic KRAS. The viability of these cells, but not that of the normal cells, is impaired by P14B treatment. These data support the significance of the α4-α5 helices region of KRAS in the regulation of oncogenic KRAS signaling, and demonstrate that drugs interacting with this site may destine CRC cells to death by increasing oncogenic KRAS downstream signaling.
Collapse
Affiliation(s)
- Baraa Abuasaker
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Eduardo Garrido
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona & Institut de Recerca en Química Teòrica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Marta Vilaplana
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jesús Daniel Gómez-Zepeda
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sonia Brun
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Marta Garcia-Cajide
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Caroline Mauvezin
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Jaumot
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Maria Dolors Pujol
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaime Rubio-Martínez
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona & Institut de Recerca en Química Teòrica i Computacional (IQTCUB), 08028 Barcelona, Spain
- Correspondence: (J.R.-M.); (N.A.); Tel.: +34-934039263 (J.R.-M.); +34-934035267 (N.A.)
| | - Neus Agell
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: (J.R.-M.); (N.A.); Tel.: +34-934039263 (J.R.-M.); +34-934035267 (N.A.)
| |
Collapse
|
4
|
Bannoura SF, Khan HY, Azmi AS. KRAS G12D targeted therapies for pancreatic cancer: Has the fortress been conquered? Front Oncol 2022; 12:1013902. [PMID: 36531078 PMCID: PMC9749787 DOI: 10.3389/fonc.2022.1013902] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
KRAS mutations are among the most commonly occurring mutations in cancer. After being deemed undruggable for decades, KRAS G12C specific inhibitors showed that small molecule inhibitors can be developed against this notorious target. At the same time, there is still no agent that could target KRAS G12D which is the most common KRAS mutation and is found in the majority of KRAS-mutated pancreatic tumors. Nevertheless, significant progress is now being made in the G12D space with the development of several compounds that can bind to and inhibit KRAS G12D, most notably MRTX1133. Exciting advances in this field also include an immunotherapeutic approach that uses adoptive T-cell transfer to specifically target G12D in pancreatic cancer. In this mini-review, we discuss recent advances in KRAS G12D targeting and the potential for further clinical development of the various approaches.
Collapse
Affiliation(s)
- Sahar F. Bannoura
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, United States
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Asfar S. Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Whaby M, Wallon L, Mazzei M, Khan I, Teng KW, Koide S, O’Bryan JP. Mutations in the α4-α5 allosteric lobe of RAS do not significantly impair RAS signaling or self-association. J Biol Chem 2022; 298:102661. [PMID: 36334633 PMCID: PMC9763690 DOI: 10.1016/j.jbc.2022.102661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Wallon
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA,Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA,For correspondence: John P. O’Bryan; Shohei Koide
| | - John P. O’Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA,For correspondence: John P. O’Bryan; Shohei Koide
| |
Collapse
|
6
|
Khan I, Koide A, Zuberi M, Ketavarapu G, Denbaum E, Teng KW, Rhett JM, Spencer-Smith R, Hobbs GA, Camp ER, Koide S, O'Bryan JP. Identification of the nucleotide-free state as a therapeutic vulnerability for inhibition of selected oncogenic RAS mutants. Cell Rep 2022; 38:110322. [PMID: 35139380 PMCID: PMC8936000 DOI: 10.1016/j.celrep.2022.110322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
RAS guanosine triphosphatases (GTPases) are mutated in nearly 20% of human tumors, making them an attractive therapeutic target. Following our discovery that nucleotide-free RAS (apo RAS) regulates cell signaling, we selectively target this state as an approach to inhibit RAS function. Here, we describe the R15 monobody that exclusively binds the apo state of all three RAS isoforms in vitro, regardless of the mutation status, and captures RAS in the apo state in cells. R15 inhibits the signaling and transforming activity of a subset of RAS mutants with elevated intrinsic nucleotide exchange rates (i.e., fast exchange mutants). Intracellular expression of R15 reduces the tumor-forming capacity of cancer cell lines driven by select RAS mutants and KRAS(G12D)-mutant patient-derived xenografts (PDXs). Thus, our approach establishes an opportunity to selectively inhibit a subset of RAS mutants by targeting the apo state with drug-like molecules. Khan et al. develop a high-affinity monobody to nucleotide-free RAS that, when expressed intracellularly, inhibits oncogenic RAS-mediated signaling and tumorigenesis. This study reveals the feasibility of targeting the nucleotide-free state to inhibit tumors driven by oncogenic RAS mutants that possess elevated nucleotide exchange activity.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Mariyam Zuberi
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eric Denbaum
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ernest Ramsay Camp
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
7
|
Ozdemir ES, Koester AM, Nan X. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes (Basel) 2022; 13:219. [PMID: 35205266 PMCID: PMC8872464 DOI: 10.3390/genes13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
| | - Anna M. Koester
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| | - Xiaolin Nan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| |
Collapse
|
8
|
Ilter M, Kasmer R, Jalalypour F, Atilgan C, Topcu O, Karakas N, Sensoy O. Inhibition of mutant RAS-RAF interaction by mimicking structural and dynamic properties of phosphorylated RAS. eLife 2022; 11:79747. [PMID: 36458814 PMCID: PMC9762712 DOI: 10.7554/elife.79747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Undruggability of RAS proteins has necessitated alternative strategies for the development of effective inhibitors. In this respect, phosphorylation has recently come into prominence as this reversible post-translational modification attenuates sensitivity of RAS towards RAF. As such, in this study, we set out to unveil the impact of phosphorylation on dynamics of HRASWT and aim to invoke similar behavior in HRASG12D mutant by means of small therapeutic molecules. To this end, we performed molecular dynamics (MD) simulations using phosphorylated HRAS and showed that phosphorylation of Y32 distorted Switch I, hence the RAS/RAF interface. Consequently, we targeted Switch I in HRASG12D by means of approved therapeutic molecules and showed that the ligands enabled detachment of Switch I from the nucleotide-binding pocket. Moreover, we demonstrated that displacement of Switch I from the nucleotide-binding pocket was energetically more favorable in the presence of the ligand. Importantly, we verified computational findings in vitro where HRASG12D/RAF interaction was prevented by the ligand in HEK293T cells that expressed HRASG12D mutant protein. Therefore, these findings suggest that targeting Switch I, hence making Y32 accessible might open up new avenues in future drug discovery strategies that target mutant RAS proteins.
Collapse
Affiliation(s)
- Metehan Ilter
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol UniversityIstanbulTurkey
| | - Ramazan Kasmer
- Medical Biology and Genetics Program, Graduate School for Health Sciences, Istanbul Medipol UniversityIstanbulTurkey,Cancer Research Center, Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Farzaneh Jalalypour
- Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbulTurkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbulTurkey
| | - Ozan Topcu
- Medical Biology and Genetics Program, Graduate School for Health Sciences, Istanbul Medipol UniversityIstanbulTurkey
| | - Nihal Karakas
- Medical Biology and Genetics Program, Graduate School for Health Sciences, Istanbul Medipol UniversityIstanbulTurkey,Department of Medical Biology, International School of Medicine, Istanbul Medipol UniversityIstanbulTurkey
| | - Ozge Sensoy
- Department of Computer Engineering, School of Engineering and Natural Sciences, Istanbul Medipol UniversityIstanbulTurkey,Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
9
|
Targeting small GTPases and their downstream pathways with intracellular macromolecule binders to define alternative therapeutic strategies in cancer. Biochem Soc Trans 2021; 49:2021-2035. [PMID: 34623375 DOI: 10.1042/bst20201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.
Collapse
|
10
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Abstract
RAS proteins represent critical drivers of tumor development and thus are the focus of intense efforts to pharmacologically inhibit these proteins in human cancer. Although recent success has been attained in developing clinically efficacious inhibitors to KRASG12C, there remains a critical need for developing approaches to inhibit additional mutant RAS proteins. A number of anti-RAS biologics have been developed which reveal novel and potentially therapeutically targetable vulnerabilities in oncogenic RAS. This review will discuss the growing field of anti-RAS biologics and potential development of these reagents into new anti-RAS therapies.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|