1
|
Martin L, Neguembor MV, Cosma MP. Women’s contribution in understanding how topoisomerases, supercoiling, and transcription control genome organization. Front Mol Biosci 2023; 10:1155825. [PMID: 37051322 PMCID: PMC10083264 DOI: 10.3389/fmolb.2023.1155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
One of the biggest paradoxes in biology is that human genome is roughly 2 m long, while the nucleus containing it is almost one million times smaller. To fit into the nucleus, DNA twists, bends and folds into several hierarchical levels of compaction. Still, DNA has to maintain a high degree of accessibility to be readily replicated and transcribed by proteins. How compaction and accessibility co-exist functionally in human cells is still a matter of debate. Here, we discuss how the torsional stress of the DNA helix acts as a buffer, regulating both chromatin compaction and accessibility. We will focus on chromatin supercoiling and on the emerging role of topoisomerases as pivotal regulators of genome organization. We will mainly highlight the major breakthrough studies led by women, with the intention of celebrating the work of this group that remains a minority within the scientific community.
Collapse
Affiliation(s)
- Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Technical Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Lead Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| |
Collapse
|
2
|
Role of Histone Tails and Single Strand DNA Breaks in Nucleosomal Arrest of RNA Polymerase. Int J Mol Sci 2023; 24:ijms24032295. [PMID: 36768621 PMCID: PMC9917218 DOI: 10.3390/ijms24032295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Transcription through nucleosomes by RNA polymerases (RNAP) is accompanied by formation of small intranucleosomal DNA loops (i-loops). The i-loops form more efficiently in the presence of single-strand breaks or gaps in a non-template DNA strand (NT-SSBs) and induce arrest of transcribing RNAP, thus allowing detection of NT-SSBs by the enzyme. Here we examined the role of histone tails and extranucleosomal NT-SSBs in i-loop formation and arrest of RNAP during transcription of promoter-proximal region of nucleosomal DNA. NT-SSBs present in linker DNA induce arrest of RNAP +1 to +15 bp in the nucleosome, suggesting formation of the i-loops; the arrest is more efficient in the presence of the histone tails. Consistently, DNA footprinting reveals formation of an i-loop after stalling RNAP at the position +2 and backtracking to position +1. The data suggest that histone tails and NT-SSBs present in linker DNA strongly facilitate formation of the i-loops during transcription through the promoter-proximal region of nucleosomal DNA.
Collapse
|
3
|
Structure of an Intranucleosomal DNA Loop That Senses DNA Damage during Transcription. Cells 2022; 11:cells11172678. [PMID: 36078089 PMCID: PMC9454427 DOI: 10.3390/cells11172678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription through chromatin by RNA polymerase II (Pol II) is accompanied by the formation of small intranucleosomal DNA loops containing the enzyme (i-loops) that are involved in survival of core histones on the DNA and arrest of Pol II during the transcription of damaged DNA. However, the structures of i-loops have not been determined. Here, the structures of the intermediates formed during transcription through a nucleosome containing intact or damaged DNA were studied using biochemical approaches and electron microscopy. After RNA polymerase reaches position +24 from the nucleosomal boundary, the enzyme can backtrack to position +20, where DNA behind the enzyme recoils on the surface of the histone octamer, forming an i-loop that locks Pol II in the arrested state. Since the i-loop is formed more efficiently in the presence of SSBs positioned behind the transcribing enzyme, the loop could play a role in the transcription-coupled repair of DNA damage hidden in the chromatin structure.
Collapse
|
4
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
5
|
Gerasimova NS, Korovina AN, Afonin DA, Shaytan KV, Feofanov AV, Studitsky VM. Analysis of Structure of Elongation Complexes in Polyacrylamide Gel with Förster Resonance Energy Transfer Technique. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Pal S, Hoinka J, Przytycka TM. Co-SELECT reveals sequence non-specific contribution of DNA shape to transcription factor binding in vitro. Nucleic Acids Res 2020; 47:6632-6641. [PMID: 31226207 DOI: 10.1093/nar/gkz540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Understanding the principles of DNA binding by transcription factors (TFs) is of primary importance for studying gene regulation. Recently, several lines of evidence suggested that both DNA sequence and shape contribute to TF binding. However, the following compelling question is yet to be considered: in the absence of any sequence similarity to the binding motif, can DNA shape still increase binding probability? To address this challenge, we developed Co-SELECT, a computational approach to analyze the results of in vitro HT-SELEX experiments for TF-DNA binding. Specifically, Co-SELECT leverages the presence of motif-free sequences in late HT-SELEX rounds and their enrichment in weak binders allows Co-SELECT to detect an evidence for the role of DNA shape features in TF binding. Our approach revealed that, even in the absence of the sequence motif, TFs have propensity to bind to DNA molecules of the shape consistent with the motif specific binding. This provides the first direct evidence that shape features that accompany the preferred sequence motifs also bestow an advantage for weak, sequence non-specific binding.
Collapse
Affiliation(s)
- Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jan Hoinka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
7
|
Apostolou Z, Chatzinikolaou G, Stratigi K, Garinis GA. Nucleotide Excision Repair and Transcription-Associated Genome Instability. Bioessays 2019; 41:e1800201. [PMID: 30919497 DOI: 10.1002/bies.201800201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.
Collapse
Affiliation(s)
- Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| |
Collapse
|
8
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
9
|
Krajewski WA, Li J, Dou Y. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics. Nucleic Acids Res 2019; 46:7631-7642. [PMID: 29931239 PMCID: PMC6125632 DOI: 10.1093/nar/gky526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
DNA in nucleosomes has restricted nucleosome dynamics and is refractory to DNA-templated processes. Histone post-translational modifications play important roles in regulating DNA accessibility in nucleosomes. Whereas most histone modifications function either by mitigating the electrostatic shielding of histone tails or by recruiting 'reader' proteins, we show that ubiquitylation of H2B K34, which is located in a tight space protected by two coils of DNA superhelix, is able to directly influence the canonical nucleosome conformation via steric hindrances by ubiquitin groups. H2B K34 ubiquitylation significantly enhances nucleosome dynamics and promotes generation of hexasomes both with symmetrically or asymmetrically modified nucleosomes. Our results indicate a direct mechanism by which a histone modification regulates the chromatin structural states.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow, 119334, Russia.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Hadwiger LA, Tanaka K. DNA Damage and Chromatin Conformation Changes Confer Nonhost Resistance: A Hypothesis Based on Effects of Anti-cancer Agents on Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1056. [PMID: 30087685 PMCID: PMC6066612 DOI: 10.3389/fpls.2018.01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
Over the last decades, medical research has utilized DNA altering procedures in cancer treatments with the objective of killing cells or suppressing cell proliferation. Simultaneous research related to enhancing disease resistance in plants reported that alterations in DNA can enhance defense responses. These two opposite perspectives have in common their effects on the center for gene transcription, the nuclear chromatin. A review of selected research from both anticancer- and plant defense-related research provides examples of some specific DNA altering actions: DNA helical distortion, DNA intercalation, DNA base substitution, DNA single cleavage by DNases, DNA alkylation/methylation, and DNA binding/exclusion. The actions of the pertinent agents are compared, and their proposed modes of action are described in this study. Many of the DNA specific agents affecting resistance responses in plants, e.g., the model system using pea endocarp tissue, are indeed anticancer agents. The tumor cell death or growth suppression in cancer cells following high level treatments may be accompanied with chromatin distortions. Likewise, in plants, DNA-specific agents activate enhanced expression of many genes including defense genes, probably due to the chromatin alterations resulting from the agents. Here, we propose a hypothesis that DNA damage and chromatin structural changes are central mechanisms in initiating defense gene transcription during the nonhost resistance response in plants.
Collapse
Affiliation(s)
- Lee A. Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|