1
|
Hao Q, Zhao W, Li Z, Lai Y, Wang Y, Yang Q, Zhang L. Combination therapy and dual-target inhibitors based on cyclin-dependent kinases (CDKs): Emerging strategies for cancer therapy. Eur J Med Chem 2025; 289:117465. [PMID: 40037064 DOI: 10.1016/j.ejmech.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Cyclin-dependent kinases (CDKs) are pivotal regulators of the cell cycle and transcriptional machinery, making them attractive targets for cancer therapy. While CDK inhibitors have demonstrated promising clinical outcomes, they also face challenges in enhancing efficacy, particularly in overcoming drug resistance. Combination therapies have emerged as a key strategy to augment the effectiveness of CDK inhibitors when used alongside other kinase inhibitors or non-kinase-targeted agents. Dual-target inhibitors that simultaneously inhibit CDKs and other oncogenic drivers are gaining attention, offering novel avenues to optimize cancer therapy. Based on the structural characterization and biological functions of CDKs, this review comprehensively examines the structure-activity relationship (SAR) of existing dual-target CDK inhibitors from a drug design perspective. We also thoroughly investigate the preclinical studies and clinical translational potential of combination therapies and dual-target inhibitors. Tailoring CDK inhibitors to specific cancer subtypes and therapeutic settings will inspire innovative approaches for the next generation of CDK-related therapies, ultimately improving patient survival.
Collapse
Affiliation(s)
- Qi Hao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenzhe Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qianqian Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Lewis BA. The role of O-GlcNAcylation in RNA polymerase II transcription. J Biol Chem 2024; 300:105705. [PMID: 38311176 PMCID: PMC10906531 DOI: 10.1016/j.jbc.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) is responsible for the transcription of the protein-coding genes in the cell. Enormous progress has been made in discovering the protein activities that are required for transcription to occur, but the effects of post-translational modifications (PTMs) on RNAPII transcriptional regulation are much less understood. Most of our understanding relates to the cyclin-dependent kinases (CDKs), which appear to act relatively early in transcription. However, it is becoming apparent that other PTMs play a crucial role in the transcriptional cycle, and it is doubtful that any sort of complete understanding of this regulation is attainable without understanding the spectra of PTMs that occur on the transcriptional machinery. Among these is O-GlcNAcylation. Recent experiments have shown that the O-GlcNAc PTM likely has a prominent role in transcription. This review will cover the role of the O-GlcNAcylation in RNAPII transcription during initiation, pausing, and elongation, which will hopefully be of interest to both O-GlcNAc and RNAPII transcription researchers.
Collapse
Affiliation(s)
- Brian A Lewis
- Gene Regulation Section/LP, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Ford K, Munson BP, Fong SH, Panwala R, Chu WK, Rainaldi J, Plongthongkum N, Arunachalam V, Kostrowicki J, Meluzzi D, Kreisberg JF, Jensen-Pergakes K, VanArsdale T, Paul T, Tamayo P, Zhang K, Bienkowska J, Mali P, Ideker T. Multimodal perturbation analyses of cyclin-dependent kinases reveal a network of synthetic lethalities associated with cell-cycle regulation and transcriptional regulation. Sci Rep 2023; 13:7678. [PMID: 37169829 PMCID: PMC10175263 DOI: 10.1038/s41598-023-33329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brenton P Munson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samson H Fong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wai Keung Chu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Todd VanArsdale
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Thomas Paul
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Pablo Tamayo
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
6
|
Donovan MG, Galbraith MD, Espinosa JM. Multi-omics investigation reveals functional specialization of transcriptional cyclin dependent kinases in cancer biology. Sci Rep 2022; 12:22505. [PMID: 36577800 PMCID: PMC9797569 DOI: 10.1038/s41598-022-26860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Transcriptional addiction is recognized as a valid therapeutic target in cancer, whereby the dependency of cancer cells on oncogenic transcriptional regulators may be pharmacologically exploited. However, a comprehensive understanding of the key factors within the transcriptional machinery that might afford a useful therapeutic window remains elusive. Herein, we present a cross-omics investigation into the functional specialization of the transcriptional cyclin dependent kinases (tCDKs) through analysis of high-content genetic dependency, gene expression, patient survival, and drug response datasets. This analysis revealed specialization among tCDKs in terms of contributions to cancer cell fitness, clinical prognosis, and interaction with oncogenic signaling pathways. CDK7 and CDK9 stand out as the most relevant targets, albeit through distinct mechanisms of oncogenicity and context-dependent contributions to cancer survival and drug sensitivity. Genetic ablation of CDK9, but not CDK7, mimics the effect on cell viability the loss of key components of the transcriptional machinery. Pathway analysis of genetic co-dependency and drug sensitivity data show CDK7 and CDK9 have distinct relationships with major oncogenic signatures, including MYC and E2F targets, oxidative phosphorylation, and the unfolded protein response. Altogether, these results inform the improved design of therapeutic strategies targeting tCDKs in cancer.
Collapse
Affiliation(s)
- Micah G Donovan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y, Pang C. Preliminary exploration of the co-regulation of Alzheimer's disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 2022; 14:1069606. [PMID: 36561136 PMCID: PMC9764863 DOI: 10.3389/fnagi.2022.1069606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of age-related neurodegenerative disease. Unfortunately, due to the complexity of pathological types and clinical heterogeneity of AD, there is a lack of satisfactory treatment for AD. Previous studies have shown that microRNAs and transcription factors can modulate genes associated with AD, but the underlying pathophysiology remains unclear. Methods The datasets GSE1297 and GSE5281 were downloaded from the gene expression omnibus (GEO) database and analyzed to obtain the differentially expressed genes (DEGs) through the "R" language "limma" package. The GSE1297 dataset was analyzed by weighted correlation network analysis (WGCNA), and the key gene modules were selected. Next, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for the key gene modules were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, for the GSE150693 dataset, the "R" package "survivation" was used to integrate the data of survival time, AD transformation status and 35 characteristics, and the key microRNAs (miRNAs) were selected by Cox method. We also performed regression analysis using least absolute shrinkage and selection operator (Lasso)-Cox to construct and validate prognostic features associated with the four key genes using different databases. We also tried to find drugs targeting key genes through DrugBank database. Results GO and KEGG enrichment analysis showed that DEGs were mainly enriched in pathways regulating chemical synaptic transmission, glutamatergic synapses and Huntington's disease. In addition, 10 hub genes were selected from the PPI network by using the algorithm Between Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were selected by correlation with clinical information, and the established model had very good prognosis in different databases. Finally, hsa-miR-425-5p and hsa-miR-186-5p were determined by COX regression, AD transformation status and aberrant miRNAs. Conclusion In conclusion, we tried to construct a network in which miRNAs and transcription factors jointly regulate pathogenic genes, and described the process that abnormal miRNAs and abnormal transcription factors TBP and CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1. The insights gained from this study offer the potential AD biomarkers, which may be of assistance to the diagnose and therapy of AD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Guo
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yue Sun
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
8
|
Narain A, Bhandare P, Adhikari B, Backes S, Eilers M, Dölken L, Schlosser A, Erhard F, Baluapuri A, Wolf E. Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination. Mol Cell 2021; 81:3110-3127.e14. [PMID: 34233157 PMCID: PMC8354102 DOI: 10.1016/j.molcel.2021.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/24/2021] [Accepted: 06/11/2021] [Indexed: 01/22/2023]
Abstract
SPT6 is a histone chaperone that tightly binds RNA polymerase II (RNAPII) during transcription elongation. However, its primary role in transcription is uncertain. We used targeted protein degradation to rapidly deplete SPT6 in human cells and analyzed defects in RNAPII behavior by a multi-omics approach and mathematical modeling. Our data indicate that SPT6 is a crucial factor for RNAPII processivity and is therefore required for the productive transcription of protein-coding genes. Unexpectedly, SPT6 also has a vital role in RNAPII termination, as acute depletion induced readthrough transcription for thousands of genes. Long-term depletion of SPT6 induced cryptic intragenic transcription, as observed earlier in yeast. However, this phenotype was not observed upon acute SPT6 depletion and therefore can be attributed to accumulated epigenetic perturbations in the prolonged absence of SPT6. In conclusion, targeted degradation of SPT6 allowed the temporal discrimination of its function as an epigenetic safeguard and RNAPII elongation factor. Auxin-inducible degradation discriminates direct roles of human SPT6 in transcription Acute loss of SPT6 globally impairs RNAPII processivity and speed SPT6 is required for efficient transcription termination on protein-coding genes Long-term loss of SPT6 ultimately results in cryptic intragenic transcription
Collapse
Affiliation(s)
- Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany.
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University of Würzburg, Beethovenstraße 1A, 97080 Würzburg, Germany.
| |
Collapse
|
9
|
Transcriptional cyclin-dependent kinases as the mediators of inflammation-a review. Gene 2020; 769:145200. [PMID: 33031895 DOI: 10.1016/j.gene.2020.145200] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinases (CDKs) belong to the serine/threonine kinase family, and their unique interactions with a variety of cyclin complexes influence its catalytic activity to ensure unimpaired cell cycle progression. In addition to their cell cycle regulatory roles, it is becoming increasingly clear that the CDKs can have multiple functional roles like transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions, and in spermatogenesis. Further in addition, recent reports suggest that CDKs have a remarkable regulatory role in influencing the pro-inflammatory functions of various cytokines during the clinical inflammatory responses. CDKs initiate the inflammatory responses by triggering the activity of prominent pro-inflammatory transcription factors such as nuclear factor kappa B (NF-kB), signal transducer and activator of transcription 3 (STAT3), and activator protein 1 (AP-1). The transcriptional CDKs (tCDKs) is crucial for organizing various transcription events and associated processes such as RNA capping, splicing, 3' end formation, and chromatin remodeling. Although the in-depth mechanism of certain mammalian CDKs is explored with respect to inflammation, the role of other tCDKs or any synergistic play among the members still remains unexplored. Until today, there is only supportive and palliative care available most of the inflammatory disorders, and thus it is the right time to explore novel pharmacological targets. In this regard, we focus on the pathophysiological role of CDK7, CDK8 and CDK9 and their impact on the development of inflammatory disorders within the mammals. Additionally, we discuss the potential trends of having tCDKs as a therapeutic target for fine-tuning inflammatory disorders.
Collapse
|
10
|
Stretton C, Lipina C, Hyde R, Cwiklinski E, Hoffmann TM, Taylor PM, Hundal HS. CDK7 is a component of the integrated stress response regulating SNAT2 (SLC38A2)/System A adaptation in response to cellular amino acid deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:978-991. [PMID: 30857869 PMCID: PMC6456927 DOI: 10.1016/j.bbamcr.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Extracellular amino acid (AA) withdrawal/restriction invokes an integrated stress response (ISR) that induces global suppression of protein synthesis whilst allowing transcription and translation of a select group of genes, whose protein products facilitate cellular adaptation to AA insufficiency. Transcriptional induction of the System A/SNAT2 AA transporter represents a classic adaptation response and crucially depends upon activation of the General Control Nonderepressible-2 kinase/Activating transcription factor 4 (GCN2/ATF4) pathway. However, the ISR may also include additional signalling inputs operating in conjunction or independently of GCN2/ATF4 to upregulate SNAT2. Herein, we show that whilst pharmacological inhibition of MEK-ERK, mTORC1 and p38 MAP kinase signalling has no detectable effect on System A upregulation, inhibitors targeting GSK3 (e.g. SB415286) caused significant repression of the SNAT2 adaptation response. Strikingly, the effects of SB415286 persist in cells in which GSK3α/β have been stably silenced indicating an off-target effect. We show that SB415286 can also inhibit cyclin-dependent kinases (CDK) and that roscovitine and flavopiridol (two pan CDK inhibitors) are effective repressors of the SNAT2 adaptive response. In particular, our work reveals that CDK7 activity is upregulated in AA-deprived cells in a GCN-2-dependent manner and that a potent and selective CDK7 inhibitor, THZ-1, not only attenuates the increase in ATF4 expression but blocks System A adaptation. Importantly, the inhibitory effects of THZ-1 on System A adaptation are mitigated in cells expressing a doxycycline-inducible drug-resistant form of CDK7. Our data identify CDK7 as a novel component of the ISR regulating System A adaptation in response to AA insufficiency. Roscovitine and flavopiridol (CDK inhibitors) block the System A adaptive response. Extracellular amino acid (AA) withdrawal induces CDK7 activation. Pharmacological inhibition of GCN2 represses CDK7 activation in AA-deprived cells. Targeted suppression of CDK7 represses ATF4 expression and System A adaptation.
Collapse
Affiliation(s)
- Clare Stretton
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Russell Hyde
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma Cwiklinski
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thorsten M Hoffmann
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter M Taylor
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
11
|
Abstract
The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer
Collapse
Affiliation(s)
- Matthew D Galbraith
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Heather Bender
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Joaquín M Espinosa
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Department of Molecular, Cellular and Developmental Biology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|