1
|
Byrd SE, Hoyt B, Ozersky SA, Crocker AW, Habenicht D, Nester MR, Prowse H, Turkal CE, Joseph L, Duina AA. Assessing contributions of DNA sequences at the 3' end of a yeast gene on yFACT, RNA polymerase II, and nucleosome occupancy. BMC Res Notes 2024; 17:219. [PMID: 39103906 PMCID: PMC11301940 DOI: 10.1186/s13104-024-06872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination. RESULTS We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene's 3' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.
Collapse
Affiliation(s)
- Samuel E Byrd
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | - Brianna Hoyt
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Alex W Crocker
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Mattie R Nester
- Biology Department, Hendrix College, Conway, AR, 72032, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Heather Prowse
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Lauren Joseph
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | - Andrea A Duina
- Biology Department, Hendrix College, Conway, AR, 72032, USA.
| |
Collapse
|
2
|
Pablo-Kaiser A, Tucker MG, Turner GA, Dilday EG, Olmstead AG, Tackett CL, Duina AA. Dominant effects of the histone mutant H3-L61R on Spt16-gene interactions in budding yeast. Epigenetics 2022; 17:2347-2355. [PMID: 36073733 DOI: 10.1080/15592294.2022.2121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recent studies have unveiled an association between an L61R substitution within the human histone H3.3 protein and the presentation of neurodevelopmental disorders in two patients. In both cases, the mutation responsible for this substitution is encoded by one allele of the H3F3A gene and, if this mutation is indeed responsible for the disease phenotypes, it must act in a dominant fashion since the genomes of these patients also harbour three other alleles encoding wild-type histone H3.3. In our previous work in yeast, we have shown that most amino acid substitutions at H3-L61 cause an accumulation of the Spt16 component of the yFACT histone chaperone complex at the 3' end of transcribed genes, a defect we have attributed to impaired yFACT dissociation from chromatin following transcription. In those studies, however, the H3-L61R mutant had not been tested since it does not sustain viability when expressed as the sole source of histone H3 in cells. In the present work, we show that H3-L61R impairs proper Spt16 dissociation from genes when co-expressed with wild-type histone H3 in haploid cells as well as in diploid cells that express the mutant protein from one of four histone H3-encoding alleles. These results, combined with other studies linking loss of function mutations in human Spt16 and neurodevelopmental disorders, provide a possible molecular mechanism underlying the neurodevelopmental disorders seen in patients expressing the histone H3.3 L61R mutant.
Collapse
Affiliation(s)
- Alex Pablo-Kaiser
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - McKenzie G Tucker
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Grace A Turner
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Elijah G Dilday
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Avery G Olmstead
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Caroline L Tackett
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Andrea A Duina
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| |
Collapse
|