1
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
2
|
D'Amelio PB, Ferreira AC, Fortuna R, Paquet M, Silva LR, Theron F, Doutrelant C, Covas R. Disentangling climatic and nest predator impact on reproductive output reveals adverse high-temperature effects regardless of helper number in an arid-region cooperative bird. Ecol Lett 2021; 25:151-162. [PMID: 34787354 PMCID: PMC9299450 DOI: 10.1111/ele.13913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
Climate exerts a major influence on reproductive processes, and an understanding of the mechanisms involved and which factors might mitigate adverse weather is fundamental under the ongoing climate change. Here, we study how weather and nest predation influence reproductive output in a social species, and examine whether larger group sizes can mitigate the adverse effects of these factors. We used a 7‐year nest predator‐exclusion experiment on an arid‐region cooperatively breeding bird, the sociable weaver. We found that dry and, especially, hot weather were major drivers of nestling mortality through their influence on nest predation. However, when we experimentally excluded nest predators, these conditions were still strongly associated with nestling mortality. Group size was unimportant against nest predation and, although positively associated with reproductive success, it did not mitigate the effects of adverse weather. Hence, cooperative breeding might have a limited capacity to mitigate extreme weather effects.
Collapse
Affiliation(s)
- Pietro B D'Amelio
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France
| | - André C Ferreira
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Rita Fortuna
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| | - Matthieu Paquet
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Liliana R Silva
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Franck Theron
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Claire Doutrelant
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France
| | - Rita Covas
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| |
Collapse
|
3
|
Maritz B, Barends JM, Mohamed R, Maritz RA, Alexander GJ. Repeated dietary shifts in elapid snakes (Squamata: Elapidae) revealed by ancestral state reconstruction. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Identifying the traits of ancestral organisms can reveal patterns and drivers of organismal diversification. Unfortunately, reconstructing complex multistate traits (such as diet) remains challenging. Adopting a ‘reconstruct, then aggregate’ approach in a maximum likelihood framework, we reconstructed ancestral diets for 298 species of elapid snakes. We tested whether different prey types were correlated with one another, tested for one-way contingency between prey type pairs, and examined the relationship between snake body size and dietary composition. We demonstrate that the evolution of diet was characterized by niche conservation punctuated by repeated dietary shifts. The ancestor of elapids most likely fed on reptiles and possibly amphibians, with deviations from this ancestral diet occurring repeatedly due to shifts into marine environments and changes in body size. Moreover, we demonstrate important patterns of prey use, including one-way dependency—most obviously the inclusion of eggs being dependent on a diet that already included the producers of those eggs. Despite imperfect dietary data, our approach produced a robust overview of dietary evolution. Given the paucity of natural history information for many organisms, our approach has the potential to increase the number of lineages to which ancestral state reconstructions of multistate traits can be robustly applied.
Collapse
Affiliation(s)
- Bryan Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, South Africa
| | - Jody M Barends
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, South Africa
| | - Riaaz Mohamed
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, South Africa
| | - Robin A Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, South Africa
| | - Graham J Alexander
- School of Animal, Plant & Environmental Sciences, University of the Witwatersrand, Johannesburg, PO Wits, South Africa
| |
Collapse
|
4
|
Reissig J. African Journal of Herpetology: Bibliography and taxonomic discoveries of the past ten years. AFR J HERPETOL 2021. [DOI: 10.1080/21564574.2021.1952317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
5
|
Barends JM, Maritz B. Specialized morphology, not relatively large head size, facilitates competition between a small‐bodied specialist and large‐bodied generalist competitors. J Zool (1987) 2021. [DOI: 10.1111/jzo.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. M. Barends
- Department of Biodiversity and Conservation Biology University of the Western Cape Cape Town South Africa
| | - B. Maritz
- Department of Biodiversity and Conservation Biology University of the Western Cape Cape Town South Africa
| |
Collapse
|
6
|
Bates MF, Wilson B. First record of a Cape cobra
Naja nivea
(Reptilia: Squamata) preying on an aardwolf
Proteles cristatus
(Mammalia: Carnivora). Afr J Ecol 2020. [DOI: 10.1111/aje.12792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael F. Bates
- Department of Herpetology National Museum Bloemfontein South Africa
- Department of Zoology & Entomology University of the Free State Bloemfontein South Africa
| | - Beryl Wilson
- Department of Zoology McGregor Museum Kimberley South Africa
| |
Collapse
|
7
|
Berg P, Berg J, Berg R. Predator–prey interaction between a boomslang,
Dispholidus typus,
and a flap‐necked chameleon,
Chamaeleo dilepis. Afr J Ecol 2020. [DOI: 10.1111/aje.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Maritz RA, Maritz B. Sharing for science: high-resolution trophic interactions revealed rapidly by social media. PeerJ 2020; 8:e9485. [PMID: 32714662 PMCID: PMC7354841 DOI: 10.7717/peerj.9485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Discrete, ephemeral natural phenomena with low spatial or temporal predictability are incredibly challenging to study systematically. In ecology, species interactions, which constitute the functional backbone of ecological communities, can be notoriously difficult to characterise especially when taxa are inconspicuous and the interactions of interest (e.g., trophic events) occur infrequently, rapidly, or variably in space and time. Overcoming such issues has historically required significant time and resource investment to collect sufficient data, precluding the answering of many ecological and evolutionary questions. Here, we show the utility of social media for rapidly collecting observations of ephemeral ecological phenomena with low spatial and temporal predictability by using a Facebook group dedicated to collecting predation events involving reptiles and amphibians in sub-Saharan Africa. We collected over 1900 independent feeding observations using Facebook from 2015 to 2019 involving 83 families of predators and 129 families of prey. Feeding events by snakes were particularly well-represented with close to 1,100 feeding observations recorded. Relative to an extensive literature review spanning 226 sources and 138 years, we found that social media has provided snake dietary records faster than ever before in history with prey being identified to a finer taxonomic resolution and showing only modest concordance with the literature due to the number of novel interactions that were detected. Finally, we demonstrate that social media can outperform other citizen science image-based approaches (iNaturalist and Google Images) highlighting the versatility of social media and its ability to function as a citizen science platform.
Collapse
Affiliation(s)
- Robin A Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Bryan Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
9
|
Harris RJ, Zdenek CN, Harrich D, Frank N, Fry BG. An Appetite for Destruction: Detecting Prey-Selective Binding of α-Neurotoxins in the Venom of Afro-Asian Elapids. Toxins (Basel) 2020; 12:toxins12030205. [PMID: 32210072 PMCID: PMC7150784 DOI: 10.3390/toxins12030205] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/25/2023] Open
Abstract
Prey-selective venoms and toxins have been documented across only a few species of snakes. The lack of research in this area has been due to the absence of suitably flexible testing platforms. In order to test more species for prey specificity of their venom, we used an innovative taxonomically flexible, high-throughput biolayer interferometry approach to ascertain the relative binding of 29 α-neurotoxic venoms from African and Asian elapid representatives (26 Naja spp., Aspidelaps scutatus, Elapsoidea boulengeri, and four locales of Ophiophagus hannah) to the alpha-1 nicotinic acetylcholine receptor orthosteric (active) site for amphibian, lizard, snake, bird, and rodent targets. Our results detected prey-selective, intraspecific, and geographical differences of α-neurotoxic binding. The results also suggest that crude venom that shows prey selectivity is likely driven by the proportions of prey-specific α-neurotoxins with differential selectivity within the crude venom. Our results also suggest that since the α-neurotoxic prey targeting does not always account for the full dietary breadth of a species, other toxin classes with a different pathophysiological function likely play an equally important role in prey immobilisation of the crude venom depending on the prey type envenomated. The use of this innovative and taxonomically flexible diverse assay in functional venom testing can be key in attempting to understanding the evolution and ecology of α-neurotoxic snake venoms, as well as opening up biochemical and pharmacological avenues to explore other venom effects.
Collapse
Affiliation(s)
- Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (R.J.H.); (C.N.Z.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (R.J.H.); (C.N.Z.)
| | - David Harrich
- QIMR Berghofer, Royal Brisbane Hospital, Brisbane, QLD 4029, Australia;
| | | | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (R.J.H.); (C.N.Z.)
- Correspondence:
| |
Collapse
|
10
|
Maritz B, Alexander GJ, Maritz RA. The underappreciated extent of cannibalism and ophiophagy in African cobras. Ecology 2018; 100:e02522. [PMID: 30276813 DOI: 10.1002/ecy.2522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Bryan Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Graham J Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, P.O. Wits, 2050, South Africa
| | - Robin A Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|