1
|
Liu J, Tabisola KM, Morilak DA. A projection from the medial prefrontal cortex to the lateral septum modulates coping behavior on the shock-probe test. Neuropsychopharmacology 2025:10.1038/s41386-025-02074-7. [PMID: 40016365 DOI: 10.1038/s41386-025-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Effective coping plays an important role in preventing stress-induced neuropsychiatric conditions. The ventromedial prefrontal cortex (vmPFC) has been associated with active, adaptive coping in humans and rodents. Chronic or severe stress has been shown to induce a maladaptive shift from active to passive coping behavior; however, the neural circuits for effective coping strategies remain unclear. In the current study, we demonstrated that neurons in the infralimbic (IL) subregion of rat vmPFC that project to the lateral septum (LS) were recruited by exposure to the shock probe in the shock-probe defensive burying (SPDB) test. Both chemogenetic inhibition of LS-projecting neurons in the IL and optogenetic inhibition of glutamatergic IL terminals in the LS selectively suppressed active burying responses in the SPDB test in non-stressed rats. In contrast, chemogenetic activation of the IL-LS pathway effectively reversed the shift from active coping to passive immobility in the SPDB test induced by chronic unpredictable stress (CUS). These results indicate that top-down regulation of the LS by a projection from the IL cortex is necessary for an active, adaptive behavioral coping response, and is sufficient to restore active coping that has been compromised by chronic stress. More broadly, these results point to the IL-to-LS circuit as a potential substrate underlying maladaptive shifts from active to passive coping behavior that are often associated with stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kayla M Tabisola
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Pham AL, Marquardt AE, Montgomery KR, Sobota KN, McCarthy MM, VanRyzin JW. Timing matters: modeling the effects of gestational cannabis exposure on social behavior and microglia in the developing amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638714. [PMID: 40027715 PMCID: PMC11870496 DOI: 10.1101/2025.02.17.638714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cannabis is the most frequently used illicit drug during pregnancy, with use steadily increasing in the United States as legalization and decriminalization expand to more states. Many pregnant individuals use cannabis to reduce adverse symptoms of pregnancy, considering it to be less harmful than other pharmaceuticals or alcohol. The primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), acts on the endocannabinoid (eCB) system, yet whether it perturbs neural development of the fetus is poorly understood. Previously we have shown that androgen mediated eCB tone in the developing amygdala promotes microglial phagocytosis of newborn astrocytes which has enduring consequences on the neural circuits regulating sex differences in social behavior. Microglia are the resident immune cells of the brain and express both receptors of the eCB system, CB1R and CB2R, making them likely targets of modulation by THC. It is also plausible that exposure to THC at differing gestational timepoints can result in distinct outcomes, as is the case with alcohol exposure. To model human cannabis use during either late or early pregnancy, we exposed rodents to THC either directly during the early postnatal period via intraperitoneal (IP) injection or in utero during the prenatal period via dam IP injection respectively. Here we show that postnatal THC exposure results in sex specific changes in microglial phagocytosis during development as well as social behavior during the juvenile period. Interestingly prenatal exposure to THC resulted in inverse changes to phagocytosis and social behavior. These findings highlight the differential effects of THC exposure across gestation.
Collapse
Affiliation(s)
- Aidan L Pham
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kristen R Montgomery
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Karina N Sobota
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
- Graduate Program in Physiological Sciences and Department of Physiology, State University of Londrina, Londrina, PR Brazil
| | - Margaret M McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan W VanRyzin
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
3
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2025; 76:101162. [PMID: 39561882 PMCID: PMC11811932 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
4
|
Orsucci IC, Becker KD, Ham JR, Lee JD, Bowden SM, Veenema AH. To Play or Not to Play? Effects of Playmate Familiarity and Social Isolation on Social Play Engagement in Three Laboratory Rat Strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623692. [PMID: 39605718 PMCID: PMC11601367 DOI: 10.1101/2024.11.14.623692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Social play is a motivating and rewarding behavior displayed by juveniles of many mammalian species, including humans and rats. Social play is vital to the development of social skills. Autistic children show less social play engagement which may contribute to their impairments in social skills. There is limited knowledge about what external conditions may positively or negatively influence social play engagement in humans or other animals. Therefore, we determined how two common external conditions, playmate familiarity and social isolation, modulate social play levels and social play defense tactics in juveniles of three common laboratory rat strains: Long-Evans, Sprague-Dawley, and Wistar. Males and females were socially isolated for either 2h or 48h prior to social play testing and were then exposed to either a familiar (cage mate) or novel playmate, creating four testing conditions: 2h-Familiar, 48h-Familiar, 2h-Novel, and 48h-Novel. Both playmate familiarity and social isolation length influenced social play behavior levels and tactics in juvenile rats, but did so differently for each of the three rat strains. Long-Evans played most with a familiar playmate, irrespective of time isolated, Sprague-Dawley played most in the 48h-Familiar condition, and Wistar played the least in the 2h-Familiar condition, but Wistar played more with a novel playmate than Long-Evans and Sprague-Dawley. Analysis of social play tactics by the playmates in response to nape attacks by the experimental rats revealed strain differences with novel playmates. Here, Sprague-Dawley and Wistar defended more nape attacks than Long-Evans. Sprague-Dawley evaded these attacks, thereby shortening body contact. In contrast, Wistar turned to face their playmate attacker and showed more complete rotations, thereby extending body contact and wrestling longer. Role reversals, which increase social play reciprocity and reflect the quality of social play, were higher in Long-Evans and Sprague-Dawley with familiar playmates. Role reversals decreased for Sprague-Dawley but increased for Wistar after 48h isolation. The effects of playmate familiarity or social isolation length on social play levels and tactics were similar across sex for all three strains. In conclusion, we showed that two common external factors (playmate familiarity and social isolation length) that largely vary across social play studies have a major impact on the level and quality of social play in the three rat strains. Strain differences indicate higher level and quality of social play with familiar playmates in Long-Evans, with familiar playmates after short isolation in Sprague-Dawley, and with novel playmates after longer isolation for Wistar. Future research could determine whether strain differences in neuronal mechanisms underlie these condition-induced variations in social play engagement. Our findings are also informative in suggesting that external conditions like playmate familiarity and social isolation length could influence social play levels and social play quality in typical and atypical children.
Collapse
Affiliation(s)
- Isabella C. Orsucci
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Kira D. Becker
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Jackson R. Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jessica D.A. Lee
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Samantha M. Bowden
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexa H. Veenema
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Marquardt AE, Basu M, VanRyzin JW, Ament SA, McCarthy MM. The transcriptome of playfulness is sex-biased in the juvenile rat medial amygdala: a role for inhibitory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612456. [PMID: 39314276 PMCID: PMC11419002 DOI: 10.1101/2024.09.11.612456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Social play is a dynamic behavior known to be sexually differentiated; in most species, males play more than females, a sex difference driven in large part by the medial amygdala (MeA). Despite the well-conserved nature of this sex difference and the importance of social play for appropriate maturation of brain and behavior, the full mechanism establishing the sex bias in play is unknown. Here, we explore "the transcriptome of playfulness" in the juvenile rat MeA, assessing differences in gene expression between high- and low-playing animals of both sexes via bulk RNA-sequencing. Using weighted gene co-expression network analysis (WGCNA) to identify gene modules combined with analysis of differentially expressed genes (DEGs), we demonstrate that the transcriptomic profile in the juvenile rat MeA associated with playfulness is largely distinct in males compared to females. Of the 13 play-associated WGCNA networks identified, only two were associated with play in both sexes, and very few DEGs associated with playfulness were shared between males and females. Data from our parallel single-cell RNA-sequencing experiments using amygdala samples from newborn male and female rats suggests that inhibitory neurons drive this sex difference, as the majority of sex-biased DEGs in the neonatal amygdala are enriched within this population. Supporting this notion, we demonstrate that inhibitory neurons comprise the majority of play-active cells in the juvenile MeA, with males having a greater number of play-active cells than females, of which a larger proportion are GABAergic. Through integrative bioinformatic analyses, we further explore the expression, function, and cell-type specificity of key play-associated modules and the regulator "hub genes" predicted to drive them, providing valuable insight into the sex-biased mechanisms underlying this fundamental social behavior.
Collapse
|
6
|
VanRyzin JW, Marquardt AE, McCarthy MM. Feminization of social play behavior depends on microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608675. [PMID: 39229086 PMCID: PMC11370478 DOI: 10.1101/2024.08.19.608675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Many sex differences in brain and behavior are established developmentally by the opposing processes of feminization and masculinization, which manifest following differential steroid hormone exposure in early life. The cellular mechanisms underlying masculinization are well-documented, a result of the fact that it is steroid-mediated and can be easily induced in newborn female rodents via exogenous steroid treatment. However, the study of feminization of particular brain regions has largely been relegated to being "not masculinization" given the absence of an identified initiating trigger. As a result, the mechanisms of this key developmental process remain elusive. Here we describe a novel role for microglia, the brain's innate immune cell, in the feminization of the medial amygdala and a complex social behavior, juvenile play. In the developing amygdala, microglia promote proliferation of astrocytes equally in both sexes, with no apparent effect on rates of cell division, but support cell survival selectively in females through the trophic actions of Tumor Necrosis Factor α (TNFα). We demonstrate that disrupting TNFα signaling, either by depleting microglia or inhibiting the associated signaling pathways, prevents the feminization of astrocyte density and increases juvenile play levels to that seen in males. This data, combined with our previous finding that male-like patterns of astrocyte density are sculpted by developmental microglial phagocytosis, reveals that sexual differentiation of the medial amygdala involves opposing tensions between active masculinization and active feminization, both of which require microglia but are achieved via distinct processes.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashley E Marquardt
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Margaret M McCarthy
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
7
|
Pellis SM, Ham JR. Play behavior: Why do adults play less than juveniles? Curr Biol 2024; 34:R784-R786. [PMID: 39163841 DOI: 10.1016/j.cub.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Play behavior is typically most frequent in immature animals and then declines by adulthood. New research reveals a brain mechanism that may underlie this age-related decline in play.
Collapse
Affiliation(s)
- Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
8
|
Ham JR, Pellis SM. Play partner preferences among groups of unfamiliar juvenile male rats. Sci Rep 2024; 14:16056. [PMID: 38992171 PMCID: PMC11239858 DOI: 10.1038/s41598-024-66988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Like many mammals, as juveniles, rats engage in play fighting, which in the laboratory is typically studied in dyads, and consequently, it is the researcher who determines a rat's play partner. In real-life conditions, a rat would have many partners with whom to play. In a previous study, we found that rats do prefer to play with some individuals more than others, and surprisingly, when given the choice, unfamiliar partners are preferred to familiar ones. In this study, we assessed partner choice when all the available partners are strangers. Eight groups of six unfamiliar juvenile male rats were observed for 10 min play trials. One of the six in each group was selected as the 'focal' rat and his play towards, and received by, the others were scored. Social networks revealed that five of the eight groups formed preferences, with preferred partners also engaging in more play with the focal rat. The mechanism by which these preferences were formed remains to be determined, but it seems that there are individual differences, potentially in the amount and style of play, that allow an individual to select the most suitable partner from a group of strangers.
Collapse
Affiliation(s)
- Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Alberta, Canada.
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Alberta, Canada
| |
Collapse
|
9
|
Burghardt GM, Pellis SM, Schank JC, Smaldino PE, Vanderschuren LJMJ, Palagi E. Animal play and evolution: Seven timely research issues about enigmatic phenomena. Neurosci Biobehav Rev 2024; 160:105617. [PMID: 38458553 DOI: 10.1016/j.neubiorev.2024.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
The nature of play in animals has been long debated, but progress is being made in characterizing play and its variants, documenting its distribution across vertebrate and invertebrate taxa, describing its mechanisms and development, and proposing testable theories about its origins, evolution, and adaptive functions. To achieve a deeper understanding of the functions and evolution of play, integrative and conceptual advances are needed in neuroscience, computer modeling, phylogenetics, experimental techniques, behavior development, and inter- and intra-specific variation. The special issue contains papers documenting many of these advances. Here, we describe seven timely areas where further research is needed to understand this still enigmatic class of phenomena more fully. Growing empirical and theoretical evidence reveals that play has been crucial in the evolution of behavior and psychology but has been underestimated, if not ignored, in both empirical and theoretical areas of evolutionary biology and neuroscience. Play research has important ramifications for understanding the evolution of cognition, emotion, and culture, and research on animals can be both informative and transformative.
Collapse
Affiliation(s)
- Gordon M Burghardt
- Departments of Psychology and Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jeffrey C Schank
- Department of Psychology and Animal Behavior Graduate Group, University of California, Davis, CA, USA
| | - Paul E Smaldino
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA, and Santa Fe Institute, Santa Fe, NM, USA
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Elisabetta Palagi
- Unit of Ethology, Department of Biology, University of Pisa and Natural History Museum, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Achterberg EJM, Burke CJ, Pellis SM. When the individual comes into play: The role of self and the partner in the dyadic play fighting of rats. Behav Processes 2023; 212:104933. [PMID: 37643663 DOI: 10.1016/j.beproc.2023.104933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Social play in rats is rewarding and important for the development of brain and social skills. There are differences in the amount of play behavior displayed among individuals, with earlier studies suggesting that, despite variation across trials, individual differences tend to be consistent. In the present study, juvenile Lister-hooded rats were paired with a different, unfamiliar same-sex partner on three days and based on the amount of play each individual initiated, it was characterized as a high, medium or low player. Using this categorization, we explored three features related to individual differences. First, we show that by increasing the number of test days from two, as was done in a previous study (Lesscher et al., 2021), to three, characterization was effectively improved. Secondly, while the earlier study only used males, the present study showed that both sexes exhibit a similar pattern of individual differences in the degree of playfulness. Even though low players consistently initiated less play than medium and high players, all rats varied in how much play they initiated from one trial to the next. Thirdly, we assessed two potential mechanisms by which the playfulness of one rat can modify the level of playfulness of the other rat (i.e., emotional contagion vs homeostasis). Analyses of individuals' contribution to the play of dyads suggest that rats consistently adjust their play behavior depending on the behavior displayed by the partner. Since this adjustment can be positive or negative, our data support a homeostatic mechanism, whereby individuals increase or decrease the amount of play they initiate, which results in the experience of an overall stable pattern of play across trials. Future research will investigate the neural bases for individual differences in play and how rats maintain a preferred level of play.
Collapse
Affiliation(s)
- E J M Achterberg
- Behavioural Neuroscience Division, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - C J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada; Department of Pharmacology, McGill University, Montreal, Canada
| | - S M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
11
|
Amodei R, Jonker SS, Smallman M, Whitler W, Estill CT, Roselli CE. Effect of Fetal Pituitary-Testes Suppression on Brain Sexual Differentiation and Reproductive Function in Male Sheep. Endocrinology 2023; 164:bqad129. [PMID: 37610243 PMCID: PMC10484288 DOI: 10.1210/endocr/bqad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
We previously demonstrated that treating fetal lambs on gestational day 62 with the long-acting gonadotrophin-releasing hormone (GnRH) antagonist degarelix (DG) suppresses pituitary-testicular function during midgestation. The objective of this study was to investigate whether impaired gonadotrophic drive during this fetal period has enduring effects on sexual differentiation and reproductive function in adult male sheep. We assessed the effects of prenatal administration of DG, with or without testosterone (T) replacement, on various sexually dimorphic behavioral traits in adult rams, including sexual partner preferences, as well as neuroendocrine responsiveness and testicular function. Our findings revealed that DG treatment had no effect on genital differentiation or somatic growth. There were some indications that DG treatment suppressed juvenile play behavior and adult sexual motivation; however, male-typical sexual differentiation of reproductive behavior, sexual partner preference, and gonadotropin feedback remained unaffected and appeared to be fully masculinized and defeminized. DG-treated rams showed an increased LH response to GnRH stimulation and a decreased T response to human chorionic gonadotropin stimulation, suggesting impaired Leydig cell function and reduced T feedback. Both effects were reversed by cotreatment with T propionate. DG treatment also suppressed the expression of CYP17 messenger RNA, a key enzyme for T biosynthesis. Despite the mild hypogonadism induced by DG treatment, ejaculate volume, sperm motility, and sperm morphology were not affected. In summary, these results suggest that blocking GnRH during midgestation does not have enduring effects on brain sexual differentiation but does negatively affect the testes' capacity to synthesize T.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Mary Smallman
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA
| | - William Whitler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4501, USA
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4501, USA
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
12
|
Cooper MA, Grizzell JA, Whitten CJ, Burghardt GM. Comparing the ontogeny, neurobiology, and function of social play in hamsters and rats. Neurosci Biobehav Rev 2023; 147:105102. [PMID: 36804399 PMCID: PMC10023430 DOI: 10.1016/j.neubiorev.2023.105102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Syrian hamsters show complex social play behavior and provide a valuable animal model for delineating the neurobiological mechanisms and functions of social play. In this review, we compare social play behavior of hamsters and rats and underlying neurobiological mechanisms. Juvenile rats play by competing for opportunities to pin one another and attack their partner's neck. A broad set of cortical, limbic, and striatal regions regulate the display of social play in rats. In hamsters, social play is characterized by attacks to the head in early puberty, which gradually transitions to the flanks in late puberty. The transition from juvenile social play to adult hamster aggression corresponds with engagement of neural ensembles controlling aggression. Play deprivation in rats and hamsters alters dendritic morphology in mPFC neurons and impairs flexible, context-dependent behavior in adulthood, which suggests these animals may have converged on a similar function for social play. Overall, dissecting the neurobiology of social play in hamsters and rats can provide a valuable comparative approach for evaluating the function of social play.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| | - J Alex Grizzell
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Gordon M Burghardt
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA; Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| |
Collapse
|
13
|
Paquette D, StGeorge JM. Proximate and Ultimate Mechanisms of Human Father-child Rough-and-tumble Play. Neurosci Biobehav Rev 2023; 149:105151. [PMID: 37004893 DOI: 10.1016/j.neubiorev.2023.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The aim of this contribution is to attempt to understand the adaptive functions of father-child rough-and-tumble play (RTP) in humans. We first present a synthesis of the known proximate and ultimate mechanisms of peer-peer RTP in mammals and compare human parent-child RTP with peer-peer RTP. Next, we examine the possible biological adaptive functions of father-child RTP in humans, by comparing paternal behavior in humans versus biparental animal species, in light of the activation relationship theory and the neurobiological basis of fathering. Analysis of analogies reveals that the endocrine profile of fathers is highly variable across species, compared to that of mothers. This can be interpreted as fathers' evolutionary adjustment to specific environmental conditions affecting the care of the young. Given the high unpredictability and risk-taking features of RTP, we conclude that human adult-child RTP appears to have a biological adaptive function, one of 'opening to the world'.
Collapse
|
14
|
Pellis SM, Pellis VC, Ham JR, Stark RA. Play fighting and the development of the social brain: The rat's tale. Neurosci Biobehav Rev 2023; 145:105037. [PMID: 36621585 DOI: 10.1016/j.neubiorev.2023.105037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The benefits gained by young animals engaging in play fighting have been a subject of conjecture for over a hundred years. Progress in understanding the behavioral development of play fighting and the underlying neurobiology of laboratory rats has produced a coherent model that sheds light on this matter. Depriving rats of typical peer-peer play experience during the juvenile period leads to adults with socio-cognitive deficiencies and these are correlated with physiological and anatomical changes to the neurons of the prefrontal cortex, especially the medial prefrontal cortex. Detailed analysis of juvenile peer play has shown that using the abilities needed to ensure that play fighting is reciprocal is critical for attaining these benefits. Therefore, unlike that which was posited by many earlier hypotheses, play fighting does not train specific motor actions, but rather, improves a skill set that can be applied in many different social and non-social contexts. There are still gaps in the rat model that need to be understood, but the model is well-enough developed to provide a framework for broader comparative studies of mammals from diverse lineages that engage in play fighting.
Collapse
Affiliation(s)
- Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada.
| | - Vivien C Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| | - Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| | - Rachel A Stark
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| |
Collapse
|
15
|
Marquardt AE, VanRyzin JW, Fuquen RW, McCarthy MM. Social play experience in juvenile rats is indispensable for appropriate socio-sexual behavior in adulthood in males but not females. Front Behav Neurosci 2023; 16:1076765. [PMID: 36755666 PMCID: PMC9899815 DOI: 10.3389/fnbeh.2022.1076765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/24/2023] Open
Abstract
Social play is a dynamic and rewarding behavior abundantly expressed by most mammals during the juvenile period. While its exact function is debated, various rodent studies on the effects of juvenile social isolation suggest that participating in play is essential to appropriate behavior and reproductive success in adulthood. However, the vast majority of these studies were conducted in one sex only, a critical concern given the fact that there are known sex differences in play's expression: across nearly all species that play, males play more frequently and intensely than females, and there are qualitative sex differences in play patterns. Further limiting our understanding of the importance of play is the use of total isolation to prevent interactions with other juveniles. Here, we employed a novel cage design to specifically prevent play in rats while allowing for other forms of social interaction. We find that play deprivation during the juvenile period results in enduring sex-specific effects on later-life behavior, primarily in males. Males prevented from playing as juveniles exhibited decreased sexual behavior, hypersociability, and increased aggressiveness in adulthood, with no effects on these measures in females. Importantly, play deprivation had no effect on anxiety-like behavior, object memory, sex preference, or social recognition in either sex, showing the specificity of the identified impairments, though there were overall sex differences in many of these measures. Additionally, acute play deprivation impaired performance on a test of prosocial behavior in both sexes, indicating a difference in the motivation and/or ability to acquire this empathy-driven task. Together, these findings provide novel insight into the importance and function of juvenile social play and how this differs in males and females.
Collapse
Affiliation(s)
- Ashley E. Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rebeca W. Fuquen
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Margaret M. McCarthy
| |
Collapse
|
16
|
King'uyu DN, Stephens SBZ, Kopec AM. Immune signaling in sex-specific neural and behavioral development: Adolescent opportunity. Curr Opin Neurobiol 2022; 77:102647. [PMID: 36332416 PMCID: PMC9893405 DOI: 10.1016/j.conb.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Sex differences in neural and behavioral development are integral to understanding neurodevelopmental, mental health, and neurodegenerative disorders. Much of the literature has focused on late prenatal and early postnatal life as a critical juncture for establishing sex-specific developmental trajectories, and data are now clear that immune signaling plays a central role in establishing sex differences early in life. Adolescence is another developmental period during which sex differences arise. However, we know far less about how immune signaling plays a role in establishing sex differences during adolescence. Herein, we review well-defined examples of sex differences during adolescence and then survey the literature to speculate how immune signaling might be playing a role in defining sex-specific adolescent outcomes. We discuss open questions in the literature and propose experimental design tenets that may assist in better understanding adolescent neurodevelopment.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA
| | - Shannon B Z Stephens
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA. https://twitter.com/Stephens_Lab
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA.
| |
Collapse
|
17
|
Pellis SM, Pellis VC, Ham JR, Achterberg EJM. The rough-and-tumble play of rats as a natural behavior suitable for studying the social brain. Front Behav Neurosci 2022; 16:1033999. [PMID: 36330048 PMCID: PMC9623181 DOI: 10.3389/fnbeh.2022.1033999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sergio M. Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- *Correspondence: Sergio M. Pellis
| | - Vivien C. Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jackson R. Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - E. J. M. Achterberg
- Division of Behavioural Neuroscience, Unit Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Kent MH, Jacob JC, Bowen G, Bhalerao J, Desinor S, Vavra D, Leserve D, Ott KR, Angeles B, Martis M, Sciandra K, Gillenwater K, Glory C, Meisel E, Choe A, Olivares-Navarrete R, Puetzer JL, Lambert K. Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes. Front Behav Neurosci 2022; 16:910056. [PMID: 35990727 PMCID: PMC9389412 DOI: 10.3389/fnbeh.2022.910056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.
Collapse
Affiliation(s)
- Molly H. Kent
- Department of Biology, Virginia Military Institute, Lexington, VA, United States
| | - Joanna C. Jacob
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Gabby Bowen
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Janhavi Bhalerao
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Stephanie Desinor
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Dylan Vavra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Danielle Leserve
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Kelly R. Ott
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Angeles
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Martis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine Sciandra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | | | - Clark Glory
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Eli Meisel
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Allison Choe
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA, United States
- *Correspondence: Kelly Lambert,
| |
Collapse
|
19
|
Breach MR, Dye CN, Galan A, Lenz KM. Prenatal allergic inflammation in rats programs the developmental trajectory of dendritic spine patterning in brain regions associated with cognitive and social behavior. Brain Behav Immun 2022; 102:279-291. [PMID: 35245680 PMCID: PMC9070022 DOI: 10.1016/j.bbi.2022.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
Allergic inflammation during pregnancy increases risk for a diagnosis of neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) in the offspring. Previously, we found a model of such inflammation, allergy-induced maternal immune activation (MIA), produced symptoms analogous to those associated with neurodevelopmental disorders in rats, including reduced juvenile play behavior, hyperactivity, and cognitive inflexibility. These behaviors were preceded by perinatal changes in microglia colonization and phenotype in multiple relevant brain regions. Given the role that microglia play in synaptic patterning as well as evidence for altered synaptic architecture in neurodevelopmental disorders, we investigated whether allergic MIA altered the dynamics of dendritic spine patterning throughout key regions of the rat forebrain across neurodevelopment. Adult virgin female rats were sensitized to the allergen, ovalbumin, with alum adjuvant, bred, and allergically challenged on gestational day 15. Brain tissue was collected from male and female offspring on postnatal days (P) 5, 15, 30, and 100-120 and processed for Golgi-Cox staining. Mean dendritic spine density was calculated for neurons in brain regions associated with cognition and social behavior, including the medial prefrontal cortex (mPFC), basal ganglia, septum, nucleus accumbens (NAc), and amygdala. Allergic MIA reduced dendritic spine density in the neonatal (P5) and juvenile (P15) mPFC, but these mPFC spine deficits were normalized by P30. Allergic inflammation reduced spine density in the septum of juvenile (P30) rats, with an interaction suggesting increased density in males and reduced density in females. MIA-induced reductions in spine density were also found in the female basal ganglia at P15, as well as in the NAc at P30. Conversely, MIA-induced increases were found in the NAc in adulthood. While amygdala dendritic spine density was generally unaffected throughout development, MIA reduced density in both medial and basolateral subregions in adult offspring. Correlational analyses revealed disruption to amygdala-related networks in the neonatal animals and cortico-striatal related networks in juvenile and adult animals in a sex-specific manner. Collectively, these data suggest that communication within and between these cognitive and social brain regions may be altered dynamically throughout development after prenatal exposure to allergic inflammation. They also provide a basis for future intervention studies targeted at rescuing spine and behavior changes via immunomodulatory treatments.
Collapse
Affiliation(s)
- Michaela R. Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Pellis SM, Pellis VC, Burke CJ, Stark RA, Ham JR, Euston DR, Achterberg EJM. Measuring Play Fighting in Rats: A Multilayered Approach. Curr Protoc 2022; 2:e337. [PMID: 35030300 DOI: 10.1002/cpz1.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rough-and-tumble play or play fighting is an important experience in the juvenile period of many species of mammals, as it facilitates the development of social skills, and for some species, play fighting is retained into adulthood as a tool for assessing and managing social relationships. Laboratory rats have been a model species for studying the neurobiology of play fighting and its key developmental and social functions. However, play fighting interactions are complex, involving competition and cooperation; therefore, no single measure to quantify this behavior is able to capture all its facets. Therefore, in this paper, we present a multilayered framework for scoring all the relevant facets of play that can be affected by experimental manipulations and the logic of how to match what is measured with the question being asked. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- S M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - V C Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - R A Stark
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - J R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - D R Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - E J M Achterberg
- Division Behavioural Neuroscience, Unit Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Kight KE, Argue KJ, Bumgardner JG, Bardhi K, Waddell J, McCarthy MM. Social behavior in prepubertal neurexin 1α deficient rats: A model of neurodevelopmental disorders. Behav Neurosci 2021; 135:782-803. [PMID: 34323517 PMCID: PMC8649076 DOI: 10.1037/bne0000482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss-of-function mutations in the synaptic protein neurexin1α (NRXN1α) are associated with several neurodevelopmental disorders, including autism spectrum disorder (ASD), schizophrenia, and attention-deficit hyperactivity disorder (ADHD), and many of these disorders are defined by core deficits in social cognition. Mouse models of Nrxn1α deficiency are not amenable to studying aspects of social cognition because, in general, mice do not engage in complex social interactions such as social play or prosocial helping behaviors. Rats, on the contrary, engage in these complex, well-characterized social behaviors. Using the Nrxn1tm1Sage Sprague Dawley rat, we tested a range of cognitive and social behaviors in juveniles with haplo- or biallelic Nrxn1α mutation. We found a deficit in ultrasonic vocalizations (USVs) of male and female neonatal rats with Nrxn1α deficiency. A male-specific deficit in social play was observed in Nrxn1α-deficient juveniles, although sociability and social discrimination were unaltered. Nurturing behavior induced by exposure to pups was enhanced in male and female juveniles with biallelic Nrxn1α mutation. Performance in tasks of prosocial helping behavior and food retrieval indicated severe deficits in learning and cognition in juveniles with biallelic Nrxn1α mutation, and a less severe deficit in haploinsufficient rats, although Pavlovian learning was altered only in haploinsufficient males. We also observed a male-specific increase in mobility and object investigation in juveniles with complete Nrxn1α deficiency. Together, these observations more fully characterize the Nrxn1tm1Sage Sprague Dawley rat as a model for Nrxn1α-related neurodevelopmental disorders, and support a rationale for the juvenile rat as a more appropriate model for disorders that involve core deficits in complex social behaviors. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Katherine E Kight
- Department of Pharmacology, University of Maryland School of Medicine
| | - Kathryn J Argue
- Department of Pharmacology, University of Maryland School of Medicine
| | | | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine
| | | |
Collapse
|
22
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|