1
|
Serwer P, Hunter B, Wright ET. Electron Microscopy of In-Plaque Phage T3 Assembly: Proposed Analogs of Neurodegenerative Disease Triggers. Pharmaceuticals (Basel) 2020; 13:ph13010018. [PMID: 31963711 PMCID: PMC7170049 DOI: 10.3390/ph13010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Increased knowledge of virus assembly-generated particles is needed for understanding both virus assembly and host responses to virus infection. Here, we use a phage T3 model and perform electron microscopy (EM) of thin sections (EM-TS) of gel-supported T3 plaques formed at 30 °C. After uranyl acetate/lead staining, we observe intracellular black particles, some with a difficult-to-see capsid. Some black particles (called LBPs) are larger than phage particles. The LBP frequency is increased by including proflavine, a DNA packaging inhibitor, in the growth medium and increasing plaque-forming temperature to 37 °C. Acidic phosphotungstate-precipitate (A-PTA) staining causes LBP substitution by black rings (BRs) that have the size and shape expected of hyper-expanded capsid containers for LBP DNA. BRs are less frequent in liquid cultures, suggesting that hyper-expanded capsids evolved primarily for in-gel (e.g., in-biofilm) propagation. BR-specific A-PTA staining and other observations are explained by α-sheet intense structure of the major subunit of hyper-expanded capsids. We hypothesize that herpes virus triggering of neurodegenerative disease occurs via in-gel propagation-promoted (1) generation of α-sheet intense viral capsids and, in response, (2) host production of α-sheet intense, capsid-interactive, innate immunity amyloid protein that becomes toxic. We propose developing viruses that are therapeutic via detoxifying interaction with this innate immunity protein.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA;
- Correspondence: ; Tel.: 1-210-567-3765
| | - Barbara Hunter
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA;
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA;
| |
Collapse
|
2
|
Serwer P, Hunter B, Wright ET. Cell-gel interactions of in-gel propagating bacteria. BMC Res Notes 2018; 11:699. [PMID: 30286794 PMCID: PMC6172759 DOI: 10.1186/s13104-018-3811-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
Objective Our immediate objective is to test the data-suggested possibility that in-agarose gel bacterial propagation causes gel fiber dislocation and alteration of cell distribution. We also test the further effect of lowering water activity. We perform these tests with both Gram-negative and Gram-positive bacteria. Data are obtained via electron microscopy of thin sections, which provides the first images of both bacteria and gel fibers in gel-supported bacterial lawns. The long-term objective is analysis of the effects of in-gel propagation on the DNA packaging of phages. Results We find that agarose gel-supported cells in lawns of Escherichia coli and Lysinibacillus (1) are primarily in clusters that increase in size with time and are surrounded by gel fibers, and (2) sometimes undergo gel-induced, post-duplication rotation and translation. Bacterial growth-induced dislocation of gel fibers is observed. One reason for clustering is that clustering promotes growth by increasing the growth-derived force applied to the gel fibers. Reactive force exerted by gel on cells explains cell movement. Finally, addition to growth medium of 0.94 M sucrose causes cluster-associated E. coli cells to become more densely packed and polymorphic. Shape is determined, in part, by neighboring cells, a novel observation to our knowledge.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Barbara Hunter
- Department of Pathology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
3
|
Serwer P, Wright ET. Nanomedicine and Phage Capsids. Viruses 2018; 10:E307. [PMID: 29882754 PMCID: PMC6024614 DOI: 10.3390/v10060307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Studies of phage capsids have at least three potential interfaces with nanomedicine. First, investigation of phage capsid states potentially will provide therapies targeted to similar states of pathogenic viruses. Recently detected, altered radius-states of phage T3 capsids include those probably related to intermediate states of DNA injection and DNA packaging (dynamic states). We discuss and test the idea that some T3 dynamic states include extensive α-sheet in subunits of the capsid’s shell. Second, dynamic states of pathogenic viral capsids are possible targets of innate immune systems. Specifically, α-sheet-rich innate immune proteins would interfere with dynamic viral states via inter-α-sheet co-assembly. A possible cause of neurodegenerative diseases is excessive activity of these innate immune proteins. Third, some phage capsids appear to have characteristics useful for improved drug delivery vehicles (DDVs). These characteristics include stability, uniformity and a gate-like sub-structure. Gating by DDVs is needed for (1) drug-loading only with gate opened; (2) closed gate-DDV migration through circulatory systems (no drug leakage-generated toxicity); and (3) drug release only at targets. A gate-like sub-structure is the connector ring of double-stranded DNA phage capsids. Targeting to tumors of phage capsid-DDVs can possibly be achieved via the enhanced permeability and retention effect.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
4
|
Serwer P, Wright ET, Demeler B, Jiang W. States of phage T3/T7 capsids: buoyant density centrifugation and cryo-EM. Biophys Rev 2017; 10:583-596. [PMID: 29243090 DOI: 10.1007/s12551-017-0372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Mature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7. The primary procedures are hydration-based buoyant density ultracentrifugation and purified particle-based cryo-electron microscopy (cryo-EM). We review the buoyant density centrifugation in detail. The mature, stable T3/T7 capsid is a shell flexibility-derived conversion product of an initially assembled procapsid (capsid I). During DNA packaging, capsid I expands and loses a scaffolding protein to form capsid II. The following are observations made with capsid II. (1) The in vivo DNA packaging of wild type T3 generates capsid II that has a slight (1.4%), cryo-EM-detected hyper-expansion relative to the mature phage capsid. (2) DNA packaging in some altered conditions generates more extensive hyper-expansion of capsid II, initially detected by hydration-based preparative buoyant density centrifugation in Nycodenz density gradients. (3) Capsid contraction sometimes occurs, e.g., during quantized leakage of DNA from mature T3 capsids without a tail.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
5
|
Serwer P. Hypothesis for the cause and therapy of neurodegenerative diseases. Med Hypotheses 2017; 110:60-63. [PMID: 29317070 DOI: 10.1016/j.mehy.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/05/2017] [Indexed: 10/18/2022]
Abstract
The cause and therapy of neurodegenerative diseases remain unsolved puzzles. These diseases are correlated with presence of beta sheet-rich amyloid assemblies. Here, I derive and assemble puzzle pieces to obtain a loose end-tying hypothesis for cause with direct implications for therapy. I use the following extrapolations to find connectable puzzle pieces: (a) the traditional extrapolation that amyloid/amyloid precursors cause disease, (b) a recent extrapolation that amyloid-forming proteins, some of which are virus protein homologs, are components of an empirically obscure innate immune system that counters insults, including those by both viruses and bacteria, (c) a new extrapolation that various insults produce assemblies with structural features in common and that amyloid-forming, innate immune system proteins recognize these features and, then, counter insults by co-assembly, (d, 1) a second new extrapolation that beta sheet is a common structural feature and is extended during insult-neutralizing co-assembly and (d, 2) an appendix, derived from studies of phages T3 and T4, that most insult-produced assemblies are obscure to current biochemical analysis. The hypothesis is the following. One function of amyloid-forming proteins is non-classical innate immunity to biological insults. This immunity works via beta sheet-extending co-assembly of amyloid-forming proteins with beta sheet-containing insult products. For example, co-assembly with beta sheet-containing viral assembly intermediates inhibits virus production. Amyloid-forming proteins cause neurodegenerative disease when errant, typically overproduced. Other innate immunity systems sometimes exacerbate symptoms. This hypothesis suggests the following therapy, based on manipulating Nature's chemistry. First, conduct directed evolution to obtain low-pathogenicity, chronic symptom-producing viruses with assembly intermediates that co-assemble with and destabilize both amyloid and amyloid sub-assemblies. Then, infect patients with these viruses.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States.
| |
Collapse
|
6
|
Serwer P. Restoring logic and data to phage-cures for infectious disease. AIMS Microbiol 2017; 3:706-712. [PMID: 31294183 PMCID: PMC6604969 DOI: 10.3934/microbiol.2017.4.706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023] Open
Abstract
Antibiotic therapy for infectious disease is being compromised by emergence of multi-drug-resistant bacterial strains, often called superbugs. A response is to use a cocktail of several bacteria-infecting viruses (bacteriophages or phages) to supplement antibiotic therapy. Use of such cocktails is called phage therapy, which has the advantage of response to bacterial resistance that is rapid and not exhaustible. A procedure of well-established success is to make cocktails from stockpiles of stored environmental phages. New phages are added to stockpiles when phage therapy becomes thwarted. The scientific subtext includes optimizing the following aspects: (1) procedure for rapidly detecting, purifying, storing and characterizing phages for optimization of phage cocktails, (2) use of directed evolution in the presence of bacteriostatic compounds to obtain phages that can be most efficiently used for therapy in the presence of these compounds, (3) phage genome sequencing technology and informatics to improve the characterization of phages, and (4) database technology to make optimal use of all relevant information and to rapidly retrieve phages for cocktails that will vary with the infection(s) involved. The use of phage stockpiles has an established record, including a recent major human-therapy success by the US Navy. However, I conclude that most research is not along this track and, therefore, is not likely to lead to real world success. I find that a strong case exists for action to rectify this situation.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, 7703 Floyd Curl Drive, San Antonio, Texas 28229-3900, USA
| |
Collapse
|
7
|
Serwer P, Wright ET. ATP-Driven Contraction of Phage T3 Capsids with DNA Incompletely Packaged In Vivo. Viruses 2017; 9:v9050119. [PMID: 28534826 PMCID: PMC5454431 DOI: 10.3390/v9050119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023] Open
Abstract
Adenosine triphosphate (ATP) cleavage powers packaging of a double-stranded DNA (dsDNA) molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo. These capsids retain incompletely packaged DNA (ipDNA) and are called ipDNA-capsids; the ipDNA-capsids are assumed to be products of premature genome maturation-cleavage. They were isolated via preparative Nycodenz buoyant density centrifugation. For some ipDNA-capsids, Nycodenz impermeability increases hydration and generates density so low that shell hyper-expansion must exist to accommodate associated water. Electron microscopy (EM) confirmed hyper-expansion and low permeability and revealed that 3.0 mM magnesium ATP (physiological concentration) causes contraction of hyper-expanded, low-permeability ipDNA-capsids to less than mature size; 5.0 mM magnesium ATP (border of supra-physiological concentration) or more disrupts them. Additionally, excess sodium ADP reverses 3.0 mM magnesium ATP-induced contraction and re-generates hyper-expansion. The Nycodenz impermeability implies assembly perfection that suggests selection for function in DNA packaging. These findings support the above challenge and can be explained via the assumption that T3 DNA packaging includes a back-up cycle of ATP-driven capsid contraction and hyper-expansion.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|