1
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Grasso C, Field CS, Tang CW, Ferguson PM, J Compton B, Anderson RJ, Painter GF, Weinkove R, F Hermans I, Berridge MV. Vaccines adjuvanted with an NKT cell agonist induce effective T-cell responses in models of CNS lymphoma. Immunotherapy 2020; 12:395-406. [PMID: 32316797 DOI: 10.2217/imt-2019-0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The efficacy of anti-lymphoma vaccines that exploit the cellular adjuvant properties of activated natural killer T (NKT) cells were examined in mouse models of CNS lymphoma. Materials & methods: Vaccines were prepared by either loading the NKT cell agonist, α-galactosylceramide onto irradiated and heat-shocked B- and T-lymphoma cells, or chemically conjugating α-galactosylceramide to MHC-binding peptides from a lymphoma-associated antigen. Vaccine efficacy was analyzed in mice bearing intracranial tumors. Results: Both forms of vaccine proved to be effective in preventing lymphoma engraftment through activity of T cells that accessed the CNS. Established lymphoma was harder to treat with responses constrained by Tregs, but this could be overcome by depleting Tregs prior to vaccination. Conclusion: Simply designed NKT cell-activating vaccines enhance T-cell responses and have the potential to protect against CNS lymphoma development or prevent CNS relapse. To be effective against established CNS lymphoma, vaccines need to be combined with Treg suppression.
Collapse
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Cameron S Field
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1042, New Zealand
| | - Peter M Ferguson
- Melanoma Institute Australia, 40 Rocklands Road, Wollstonecraft, NSW 2065, Australia
| | - Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Regan J Anderson
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Wellington Blood & Cancer Centre, Capital & Coast District Health Board, P.O. Box 7902, Wellington 6242, New Zealand.,Department of Pathology & Molecular Medicine, University of Otago Wellington, P.O. Box 7343, Wellington 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1042, New Zealand
| | - Michael V Berridge
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| |
Collapse
|