1
|
Faure F, Yshii L, Renno T, Coste I, Joubert B, Desestret V, Liblau R, Honnorat J. A Pilot Study to Develop Paraneoplastic Cerebellar Degeneration Mouse Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:181-196. [PMID: 36729270 DOI: 10.1007/s12311-023-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients' autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.
Collapse
Affiliation(s)
- Fabrice Faure
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
| | - Lidia Yshii
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
- Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
| | - Toufic Renno
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Isabelle Coste
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Bastien Joubert
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Virginie Desestret
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
| | - Jérôme Honnorat
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France.
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France.
| |
Collapse
|
2
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Neațu M, Jugurt A, Covaliu A, Davidescu EI, Popescu BO. Autoimmune Encephalitis-A Multifaceted Pathology. Biomedicines 2023; 11:2176. [PMID: 37626673 PMCID: PMC10452276 DOI: 10.3390/biomedicines11082176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Autoimmune encephalitis is a complex and multifaceted pathology that involves immune-mediated inflammation of the brain. It is characterized by the body's immune system attacking the brain tissue, leading to a cascade of inflammatory processes. What makes autoimmune encephalitis vast is the wide range of causes, mechanisms, clinical presentations, and diagnostic challenges associated with the condition. The clinical presentations of autoimmune encephalitis are broad and can mimic other neurological disorders, making it a challenging differential diagnosis. This diverse clinical presentation can overlap with other conditions, making it crucial for healthcare professionals to maintain a high level of suspicion for autoimmune encephalitis when evaluating patients. The diagnostic challenges associated with autoimmune encephalitis further contribute to its vastness. Due to the variable nature of the condition, there is no definitive diagnostic test that can confirm autoimmune encephalitis in all cases. In this context, personalized patient management is crucial for achieving favorable outcomes. Each patient's treatment plan should be tailored to their specific clinical presentation, underlying cause, and immune response. Our objective is to raise awareness about the frequent yet underdiagnosed nature of autoimmune encephalitis by sharing five cases we encountered, along with a brief literature review.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.J.); (A.C.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.J.); (A.C.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Anca Covaliu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.J.); (A.C.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.J.); (A.C.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.J.); (A.C.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
4
|
Muacevic A, Adler JR, Stone R, Zhong N, Lui F. An Unusual Case of Two Paraneoplastic Neurological Syndromes in a Patient With Lung Cancer. Cureus 2022; 14:e33047. [PMID: 36721608 PMCID: PMC9881601 DOI: 10.7759/cureus.33047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Paraneoplastic immune-mediated disorders have been well described in the literature. However, it is still relatively rare. The incidence has increased over the past decade due largely to the discovery of more autoantibodies. With a better understanding of the pathophysiology of different autoantibodies and clinical phenotypes, we are often able to diagnose clinically some specific paraneoplastic autoimmune neurological syndromes. We may also predict the response to treatment based on the autoantibody class. We are presenting a very unusual case of two completely different paraneoplastic syndromes with two different autoantibodies, gamma-aminobutyric acid-B (GABAB) and collapsin response mediator protein 5 (CRMP5), in a patient with underlying small-cell lung cancer. We will discuss the differences in the two antibody syndromes, their significance, and their management.
Collapse
|
5
|
Autoimmune Encephalitis: A Physician’s Guide to the Clinical Spectrum Diagnosis and Management. Brain Sci 2022; 12:brainsci12091130. [PMID: 36138865 PMCID: PMC9497072 DOI: 10.3390/brainsci12091130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The rapidly expanding spectrum of autoimmune encephalitis in the last fifteen years is largely due to ongoing discovery of many neuronal autoantibodies. The diagnosis of autoimmune encephalitis can be challenging due to the wide spectrum of clinical presentations, prevalence of psychiatric features that mimic primary psychiatric illnesses, frequent absence of diagnostic abnormalities on conventional brain MR-imaging, non-specific findings on EEG testing, and the lack of identified IgG class neuronal autoantibodies in blood or CSF in a subgroup of patients. Early recognition and treatment are paramount to improve outcomes and achieve complete recovery from these debilitating, occasionally life threatening, disorders. This review is aimed to provide primary care physicians and hospitalists who, together with neurologist and psychiatrists, are often the first port of call for individuals presenting with new-onset neuropsychiatric symptoms, with up-to-date data and evidence-based approach to the diagnosis and management of individuals with neuropsychiatric disorders of suspected autoimmune origin.
Collapse
|
6
|
Gutiérrez Pérez C, Lastra Aras E, Gómez Bravo R, Chivato Martín-Falquina I, Cuenca Zarzuela A, Rodríguez Ledesma I, García Girón C. Chronic intestinal pseudo-obstruction: diagnostic and prognostic utility of ANNA-1/Anti-Hu onconeural antibodies. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021. [PMID: 34470446 DOI: 10.17235/reed.2021.8186/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 65-year-old woman who, in the context of dyspepsia and dismotility, was diagnosed with chronic intestinal pseudo-obstruction (CIPO) in small cell lung carcinoma (SCLC). In spite of a remarkable tumor response after the combination of chemotherapy and immunotherapy, an intestinal sepsis led to the patient's sudden death.
Collapse
|
7
|
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22:809-819. [PMID: 34140679 PMCID: PMC9197228 DOI: 10.1038/s41590-021-00949-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.
Collapse
Affiliation(s)
- Jenna L Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA.,Broad Institute of MIT and Harvard, Cambridge MA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Debattama R Sen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Broad Institute of MIT and Harvard, Cambridge MA
| |
Collapse
|
8
|
Mitoma H, Manto M, Hadjivassiliou M. Immune-Mediated Cerebellar Ataxias: Clinical Diagnosis and Treatment Based on Immunological and Physiological Mechanisms. J Mov Disord 2021; 14:10-28. [PMID: 33423437 PMCID: PMC7840241 DOI: 10.14802/jmd.20040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the first description of immune-mediated cerebellar ataxias (IMCAs) by Charcot in 1868, several milestones have been reached in our understanding of this group of neurological disorders. IMCAs have diverse etiologies, such as gluten ataxia, postinfectious cerebellitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus syndrome, anti-GAD ataxia, and primary autoimmune cerebellar ataxia. The cerebellum, a vulnerable autoimmune target of the nervous system, has remarkable capacities (collectively known as the cerebellar reserve, closely linked to plasticity) to compensate and restore function following various pathological insults. Therefore, good prognosis is expected when immune-mediated therapeutic interventions are delivered during early stages when the cerebellar reserve can be preserved. However, some types of IMCAs show poor responses to immunotherapies, even if such therapies are introduced at an early stage. Thus, further research is needed to enhance our understanding of the autoimmune mechanisms underlying IMCAs, as such research could potentially lead to the development of more effective immunotherapies. We underscore the need to pursue the identification of robust biomarkers.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, University of Mons, Mons, Belgium
| | | |
Collapse
|
9
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
10
|
Mitoma H, Manto M, Hampe CS. Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges. Curr Neuropharmacol 2019; 17:33-58. [PMID: 30221603 PMCID: PMC6341499 DOI: 10.2174/1570159x16666180917105033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), antiglutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen( s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the "cerebellar reserve" is necessary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic principle of "Time is Cerebellum" in IMCAs.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Address correspondence to this author at the Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan;, E-mail:
| | | | | |
Collapse
|
11
|
General Principles of Immunotherapy in Neurological Diseases. CONTEMPORARY CLINICAL NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-19515-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Macher S, Zimprich F, De Simoni D, Höftberger R, Rommer PS. Management of Autoimmune Encephalitis: An Observational Monocentric Study of 38 Patients. Front Immunol 2018; 9:2708. [PMID: 30524441 PMCID: PMC6262885 DOI: 10.3389/fimmu.2018.02708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022] Open
Abstract
Over the last years the clinical picture of autoimmune encephalitis has gained importance in neurology. The broad field of symptoms and syndromes poses a great challenge in diagnosis for clinicians. Early diagnosis and the initiation of the appropriate treatment is the most relevant step in the management of the patients. Over the last years advances in neuroimmunology have elucidated pathophysiological basis and improved treatment concepts. In this monocentric study we compare demographics, diagnostics, treatment options and outcomes with knowledge from literature. We present 38 patients suffering from autoimmune encephalitis. Antibodies were detected against NMDAR and LGI1 in seven patients, against GAD in 6 patients) one patient had coexisting antibodies against GABAA and GABAB), against CASPR2, IGLON5, YO, Glycine in 3 patients, against Ma-2 in 2 patients, against CV2 and AMPAR in 1 patient; two patients were diagnosed with hashimoto encephalitis with antibodies against TPO/TG. First, we compare baseline data of patients who were consecutively diagnosed with autoimmune encephalitis from a retrospective view. Further, we discuss when to stop immunosuppressive therapy since how long treatment should be performed after clinical stabilization or an acute relapse is still a matter of debate. Our experiences are comparable with data from literature. However, in contrary to other experts in the field we stop treatment and monitor patients very closely after tumor removal and after rehabilitation from first attack.
Collapse
Affiliation(s)
- Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Desiree De Simoni
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Lindner M, Klotz L, Wiendl H. Mechanisms underlying lesion development and lesion distribution in CNS autoimmunity. J Neurochem 2018; 146:122-132. [PMID: 29574788 DOI: 10.1111/jnc.14339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
It is widely accepted that development of autoimmunity in the central nervous system (CNS) is triggered by autoreactive T cells, that are activated in the periphery and gain the capacity to migrate through endothelial cells at the blood-brain barrier (BBB) into the CNS. Upon local reactivation, an inflammatory cascade is initiated, that subsequently leads to a recruitment of additional immune cells ultimately causing demyelination and axonal damage. Even though the interaction of immune cells with the BBB has been in the focus of research for many years, the exact mechanisms of how immune cells enter and exit the CNS remains poorly understood. In this line, the factors deciding immune cell entry routes, lesion formation, cellular composition as well as distribution within the CNS have also not been elucidated. The following factors have been proposed to represent key determinants for lesion evaluation and distribution: (i) presence and density of (auto) antigens in the CNS, (ii) local immune milieu at sites of lesion development and resolution, (iii) trafficking routes and specific trafficking requirements, especially at the BBB and (iv) characteristics and phenotypes of CNS infiltrating cells and cell subsets (e.g. features of T helper subtypes or CD8 cells). The heterogeneity of lesion development within inflammatory demyelinating diseases remains poorly understood until today, but here especially orphan inflammatory CNS disorders such as neuromyelitis optica spectrum disorder (NMOSD), Rasmussen encephalitis or SUSAC syndrome might give important insights in critical determinants of lesion topography. Finally, investigating the interaction of T cells with the BBB using in vitro approaches or tracking of T cells in vivo in animals or even human patients, as well as the discovery of lymphatic vasculature in the CNS are teaching us new aspects during the development of CNS autoimmunity. In this review, we discuss recent findings which help to unravel mechanisms underlying lesion topography and might lead to new diagnostic or therapeutic approaches in neuroinflammatory disorders including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Maren Lindner
- Department of Neurology, University Hospital Münster, Münster, DE, Germany
| | - Luisa Klotz
- Department of Neurology, University Hospital Münster, Münster, DE, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Münster, DE, Germany.,Sydney Medical School, University of Sydney, Sydney, AU, Australia
| |
Collapse
|
14
|
Abstract
Immune-mediated cerebellar ataxia (CA) comprises a group of rare diseases that are still incompletely described, and are probably underdiagnosed. Both acute and progressive progressions are possible. Different syndromes have been identified, including CA associated with anti-GAD antibodies, the cerebellar type of Hashimoto encephalopathy, primary autoimmune CA, gluten ataxia, opsoclonus-myoclonus syndrome, and paraneoplastic cerebellar degenerations. Most of these syndromes are associated with autoantibodies targeting neuronal antigens. Additionally, autoimmune CA can be triggered by infections, especially in children, and in rare cases occur in the context of an autoimmune multisystem disease, such as systemic lupus erythematosus, sarcoidosis, or Behçet disease. A careful workup is needed to distinguish autoimmune CA from other causes. In adults, a paraneoplastic origin must be ruled out, especially in cases with subacute onset. Neurologic outcome in adults is frequently poor, and optimal therapeutic strategies remain ill defined. The outcome in children is in general good, but children with a poor recovery are on record. The precise pathophysiologic mechanisms even in the presence of detectable autoantibodies are still largely unknown. Further research is needed on both the clinical and mechanistic aspects of immune-mediated CA, and to determine optimal therapeutic strategies.
Collapse
Affiliation(s)
- Bastien Joubert
- French Reference Centre for Paraneoplastic Neurological Syndromes, Lyon Neurological Hospital, Lyon, France; Institut NeuroMyoGene, Université Claude Bernard Lyon 1, Lyon, France
| | - Kevin Rostásy
- Department of Pediatric Neurology, Witten/Herdecke University, Children's Hospital Datteln, Datteln, Germany
| | - Jérôme Honnorat
- French Reference Centre for Paraneoplastic Neurological Syndromes, Lyon Neurological Hospital, Lyon, France; Institut NeuroMyoGene, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|