1
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
2
|
Rafie E, Zugman M, Pal SK, Routy B, Elkrief A. What Is the Role of Fecal Microbiota Transplantation in Immunotherapy Trials? Current Perspectives and Future Directions. Eur Urol Focus 2024; 10:882-885. [PMID: 39890521 DOI: 10.1016/j.euf.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are rapidly transforming the treatment landscape of genitourinary and other immunogenic malignancies. Despite these advances, biomarkers for the prediction of ICI response remain to be established. The gut microbiome has been identified as a modulator of immune regulation and a potential regulator of response to ICIs. Fecal microbiota transplantation (FMT) has emerged as a potential novel therapeutic tool to enhance ICI response, as demonstrated in several trials, spanning across genitourinary malignancies as well as others. While safety and clinical potential of FMT have been demonstrated, FMT parameters including optimal treatment regimens, bowel preparation protocols, patient selection, and donor-host compatibility need to be defined. Furthermore, targeted interventions including probiotic supplementation represent promising therapeutic avenues meriting further study.
Collapse
Affiliation(s)
- Edmond Rafie
- Internal Medicine Division, Department of Medicine, Centre Hospitaller de l'Université de Sherbrooke (CHUS) Sherbrooke Quebec Canada; Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM) Montréal Quebec Canada
| | - Miguel Zugman
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center Duarte California USA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center Duarte California USA
| | - Bertrand Routy
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM) Montréal Quebec Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Montréal Quebec Canada
| | - Arielle Elkrief
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM) Montréal Quebec Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Montréal Quebec Canada.
| |
Collapse
|
3
|
Caserta S, Genovese C, Cicero N, Toscano V, Gangemi S, Allegra A. The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients 2023; 15:3327. [PMID: 37571264 PMCID: PMC10421419 DOI: 10.3390/nu15153327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The gut microbiota is a dynamic community of bacteria distributed in the gastroenteric tract and changes in response to diseases, diet, use of antibiotics and probiotics, hygiene status, and other environmental factors. Dysbiosis, a disruption of the normal crosstalk between the host and the microbes, is associated with obesity, diabetes, cancer, and cardiovascular diseases, is linked to a reduction of anti-inflammatory bacteria like Lactobacillus and Roseburia, and to an increase in the growth of proinflammatory species like Ruminococcus gnavus and Bacteroidetes. Some plants possess anticancer properties and various studies have reported that some of these are also able to modulate the gut microbiota. The aim of this work is to evaluate the crucial relationship between medical plants and gut microbiota and the consequences on the onset and progression of cancer. In vivo studies about hematological malignancies showed that beta-glucans tie to endogenous antibeta glucan antibodies and to iC3b, an opsonic fragment of the central complement protein C3, leading to phagocytosis of antibody-targeted neoplastic cells and potentiation of the cytotoxic activity of the innate immune system if administered together with monoclonal antibodies. In conclusion, this review suggests the potential use of medical plants to improve gut dysbiosis and assist in the treatment of cancer.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Claudia Genovese
- National Research Council, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Valeria Toscano
- National Research Council, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|
4
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
5
|
Ponziani FR, De Luca A, Picca A, Marzetti E, Petito V, Del Chierico F, Reddel S, Paroni Sterbini F, Sanguinetti M, Putignani L, Gasbarrini A, Pompili M. Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma. Hepatol Commun 2022; 6:1492-1501. [PMID: 35261212 PMCID: PMC9134810 DOI: 10.1002/hep4.1905] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is a well-known prognostic factor and a modulator of treatment sensitivity in patients with cancers treated with immune checkpoint inhibitors. However, data on hepatocellular carcinoma (HCC) are lacking. This study aimed to evaluate the prognostic role of the gut microbiota and changes produced by immunotherapy on the intestinal environment in patients with cirrhosis and HCC. Eleven patients treated with Tremelimumab and/or Durvalumab were included in the analysis. All study participants underwent gut microbiota profiling, quantification of fecal calprotectin, serum levels of zonulin-1, lipopolysaccharide binding protein (LBP), and programmed death-ligand 1 (PD-L1) at baseline and at each treatment cycle until the third cycle, then every three cycles until treatment discontinuation or last visit. The 6 patients who achieved disease control (DC) showed lower pretreatment fecal calprotectin (median, 12.5; interquartile range [IQR], 5-29 vs. median, 116; IQR, 59-129 µg/g; P = 0.047) and PD-L1 serum levels (median, 0.08; IQR, 0.07-0.09 vs. median, 1.04; IQR, 0.17-1.95 ng/mL; P = 0.02) than nonresponders. The relative abundance of Akkermansia (log2 fold change [FC], 2.72; adjusted P [Padj] = 0.012) was increased, whereas that of Enterobacteriaceae (log2 FC, -2.34; Padj = 0.04) was reduced in the DC group. During treatment, fecal calprotectin showed a temporal evolution opposite to the Akkermansia to Enterobacteriaceae ratio and gut microbiota alpha diversity, but similar to zonulin-1 and LBP. Bifidobacterium had a stable behavior in patients with a long follow-up, while Akkermansia was more variable. Akkermansia and Bifidobacterium showed similar temporal patterns and causative relationships with Prevotella, Veillonella, Ruminococcus, Roseburia, Lachnospira, Faecalibacterium, and Clostridium. Conclusion: A favorable composition of the gut microbiota and low intestinal inflammation are associated with achieving DC. The intestinal environment changes dynamically during therapy.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- 18654Internal Medicine and GastroenterologyHepatology UnitFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly.,Università Cattolica del Sacro CuoreRomeItaly
| | - Angela De Luca
- 18654Internal Medicine and GastroenterologyHepatology UnitFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Anna Picca
- Department of Geriatrics, Neuroscience, and OrthopedicsFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly.,Aging Research CenterDepartment of Neurobiology, Care Sciences, and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience, and OrthopedicsFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Valentina Petito
- 18654Internal Medicine and GastroenterologyHepatology UnitFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly.,Università Cattolica del Sacro CuoreRomeItaly
| | - Federica Del Chierico
- Area of Genetics and Rare DiseasesUnit of Human MicrobiomeBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Sofia Reddel
- Area of Genetics and Rare DiseasesUnit of Human MicrobiomeBambino Gesù Children's Hospital IRCCSRomeItaly
| | | | - Maurizio Sanguinetti
- Università Cattolica del Sacro CuoreRomeItaly.,Microbiology UnitFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Lorenza Putignani
- Department of LaboratoriesUnit of Parasitology and Area of Genetics and Rare DiseasesUnit of Human MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Antonio Gasbarrini
- 18654Internal Medicine and GastroenterologyHepatology UnitFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly.,Università Cattolica del Sacro CuoreRomeItaly
| | - Maurizio Pompili
- 18654Internal Medicine and GastroenterologyHepatology UnitFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly.,Università Cattolica del Sacro CuoreRomeItaly
| |
Collapse
|
6
|
Kumazoe M, Takamatsu K, Horie F, Yoshitomi R, Hamagami H, Tanaka H, Fujimura Y, Tachibana H. Methylated (-)-epigallocatechin 3-O-gallate potentiates the effect of split vaccine accompanied with upregulation of Toll-like receptor 5. Sci Rep 2021; 11:23101. [PMID: 34845235 PMCID: PMC8630126 DOI: 10.1038/s41598-021-02346-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Split-virus vaccine serves as a major countermeasure against influenza virus, but its effectiveness and protective action are not complete. We previously demonstrated the effect of Benifuuki, a green tea cultivar in Japan, on enhancing the split-virus vaccine-elicited immune response. However, little is known about the detail mechanisms. Here, we show that EGCG3"Me intake significantly potentiated the vaccine-elicited hemagglutination inhibition titer increase. Flow cytometry analysis revealed the increased Toll-like receptor 5 (TLR5) expression after EGCG3"Me treatment in lamina propria dendritic cells (LPDCs) and macrophages, which play crucial roles in the humoral immune system. TLR5 expression correlated with the level of interleukin-6 (IL-6)/C-C chemokine type receptor 5, which are important mediators of the humoral immunity. Taken together, In vivo and ex vivo studies showed that EGCG3"Me potentiated the split-virus vaccine-elicited immune response accompanied with the upregulation of TLR5 in intestine and splenocyte macrophages.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kanako Takamatsu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fuyumi Horie
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroki Hamagami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
|
8
|
Montella L, Sarno F, Ambrosino A, Facchini S, D’Antò M, Laterza MM, Fasano M, Quarata E, Ranucci RAN, Altucci L, Berretta M, Facchini G. The Role of Immunotherapy in a Tolerogenic Environment: Current and Future Perspectives for Hepatocellular Carcinoma. Cells 2021; 10:1909. [PMID: 34440678 PMCID: PMC8393830 DOI: 10.3390/cells10081909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
In contrast to several tumors whose prognoses are radically affected by novel immunotherapeutic approaches and/or targeted therapies, the outcomes of advanced hepatocellular carcinoma (HCC) remain poor. The underlying cirrhosis that is frequently associated with it complicates medical treatment and often determines survival. The landscape of HCC treatment had included sorafenib as the only drug available for ten years, until 2018, when lenvatinib was approved for treatment. The second-line systemic treatments available for hepatocellular carcinoma include regorafenib, cabozantinib, ramucirumab, and, more recently, immune checkpoint inhibitors. However, the median survival remains below 15 months. The results obtained in clinics should be interpreted whilst considering the peculiar role of the liver as an immune organ. A healthy liver microenvironment ordinarily experiences stimulation by gut-derived antigens. This setup elucidates the response to chronic inflammation and the altered balance between tolerance and immune response in HCC development. This paper provides an overview of the mechanisms involved in HCC pathogenesis, with a special focus on the immune implications, along with current and future clinical perspectives.
Collapse
Affiliation(s)
- Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Federica Sarno
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy; (F.S.); (L.A.)
| | - Annamaria Ambrosino
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Sergio Facchini
- Department of Precision Medicine, Division of Medical Oncology, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (S.F.); (M.F.)
| | - Maria D’Antò
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Maria Maddalena Laterza
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Morena Fasano
- Department of Precision Medicine, Division of Medical Oncology, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (S.F.); (M.F.)
| | - Ermelinda Quarata
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| | - Raffaele Angelo Nicola Ranucci
- ASL NA2 NORD, Internal Medicine Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (A.A.); (M.D.); (R.A.N.R.)
| | - Lucia Altucci
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, 80138 Naples, Italy; (F.S.); (L.A.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Gaetano Facchini
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy; (M.M.L.); (E.Q.)
| |
Collapse
|
9
|
Antibiotic-induced disruption of the microbiome exacerbates chemotherapy-induced diarrhoea and can be mitigated with autologous faecal microbiota transplantation. Eur J Cancer 2021; 153:27-39. [PMID: 34130227 DOI: 10.1016/j.ejca.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chemotherapy is well documented to disrupt the gut microbiome, leading to poor treatment outcomes and a heightened risk of adverse toxicity. Although strong associations exist between its composition and gastrointestinal toxicity, its causal contribution remains unclear. Our inability to move beyond association has limited the development and implementation of microbial-based therapeutics in chemotherapy adjuncts with no clear rationale of how and when to deliver them. METHODS/RESULTS Here, we investigate the impact of augmenting the gut microbiome on gastrointestinal toxicity caused by the chemotherapeutic agent, methotrexate (MTX). Faecal microbiome transplantation (FMT) delivered after MTX had no appreciable impact on gastrointestinal toxicity. In contrast, disruption of the microbiome with antibiotics administered before chemotherapy exacerbated gastrointestinal toxicity, impairing mucosal recovery (P < 0.0001) whilst increasing diarrhoea severity (P = 0.0007) and treatment-related mortality (P = 0.0045). Importantly, these detrimental effects were reversed when the microbiome was restored using autologous FMT (P = 0.03), a phenomenon dictated by the uptake and subsequent expansion of Muribaculaceae. CONCLUSIONS These are the first data to show that clinically impactful symptoms of gastrointestinal toxicity are dictated by the microbiome and provide a clear rationale for how and when to target the microbiome to mitigate the acute and chronic complications caused by disruption of the gastrointestinal microenvironment. Translation of this new knowledge should focus on stabilising and strengthening the gut microbiome before chemotherapy and developing new microbial approaches to accelerate recovery of the mucosa. By controlling the depth and duration of mucosal injury, secondary consequences of gastrointestinal toxicity may be avoided.
Collapse
|