1
|
Yan S, Zhao W, Du J, Teng L, Yu T, Xu P, Liu J, Yang R, Dong Y, Wang H, Lu L, Tao W. C-FOS promotes the formation of neutrophil extracellular traps and the recruitment of neutrophils in lung metastasis of triple-negative breast cancer. J Exp Clin Cancer Res 2025; 44:108. [PMID: 40148973 PMCID: PMC11951605 DOI: 10.1186/s13046-025-03370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are composed of DNA chains from neutrophils and associated proteolytic enzymes, which play an important role in cancer metastasis. However, the molecular mechanism of NET-mediated lung metastasis in triple-negative breast cancer (TNBC) remains unclear. METHODS The expression levels of NETs in breast cancer specimens and serum were analyzed and compared with normal samples. Single-cell sequencing bioinformatics analysis was conducted to identify differentially expressed genes and functional enrichment related to NET formation in patients with breast cancer. The effects of c-FOS on neutrophil recruitment and NET formation in TNBC were investigated. The upstream and downstream regulatory mechanisms mediated by c-FOS were explored through in vitro and in vivo experiments. Therapeutic approaches targeting c-FOS for treating TNBC were further studied. RESULTS Inhibition of c-FOS can suppress tumor growth and lung metastasis in TNBC. Mechanistically, c-FOS promotes transcription by binding to the PAD4 promoter region, facilitating the formation of NETs. Additionally, the activation of the ROS-p38 pathway further enhances c-FOS expression. High expression of c-FOS also promotes the expression of inflammatory factors, facilitating neutrophil recruitment. Both in vitro and in vivo experiments demonstrated that the application of T5224 effectively inhibits the formation of NETs, suppressing lung metastasis and tumor growth. CONCLUSION In summary, this study demonstrates that the ROS-p38-cFOS-PAD4 axis can increase NET formation in TNBC and promote the expression of inflammatory factors, facilitating neutrophil recruitment. Therefore, targeting this pathway may help inform new therapeutic strategies and provide new insights for immunotherapy in TNBC.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Wenxi Zhao
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Juntong Du
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lizhi Teng
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Tong Yu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Peng Xu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Jiangnan Liu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Ru Yang
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Yuhan Dong
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hongyue Wang
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lingran Lu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Weiyang Tao
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
2
|
Naji NS, Sathish M, Karantanos T. Inflammation and Related Signaling Pathways in Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3974. [PMID: 39682161 DOI: 10.3390/cancers16233974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, and inflammatory signaling is involved in its pathogenesis. Cytokines exert a robust effect on the progression of AML and affect survival outcomes. The dysregulation in the cytokine network may foster a pro-tumorigenic microenvironment, increasing leukemic cell proliferation, decreasing survival and driving drug resistance. The dominance of pro-inflammatory mediators such as IL-11β, TNF-α and IL-6 over anti-inflammatory mediators such as TGF-β and IL-10 has been implicated in tumor progression. Additionally, inflammatory cytokines have favored certain populations of hematopoietic stem and progenitor cells with mutated clonal hematopoiesis genes. This article summarizes current knowledge about inflammatory cytokines and signaling pathways in AML, their modes of action and the implications for immune tolerance and clonal hematopoiesis, with the aim of finding potential therapeutic interventions to improve clinical outcomes in AML patients.
Collapse
Affiliation(s)
- Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mrudula Sathish
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theodoros Karantanos
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
Caiado F, Manz MG. IL-1 in aging and pathologies of hematopoietic stem cells. Blood 2024; 144:368-377. [PMID: 38781562 DOI: 10.1182/blood.2023023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Chatterjee D, Singh B, Paira K, Das S. The Apoptotic Property of Nymphaea Caerulea Flower Extract on Acute Myeloid Leukaemia Cell Line, THP-1. Asian Pac J Cancer Prev 2024; 25:123-137. [PMID: 38285776 PMCID: PMC10911745 DOI: 10.31557/apjcp.2024.25.1.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Acute Myeloid Leukaemia (AML) is considered to be an extremely heterogeneous malignancy of bone marrow and blood. The first line of therapy for AML is prolonged chemotherapy. Due to the presence of molecular heterogeneity in AML as confirmed by next-generation sequencing, researchers are planning to develop newer strategies of therapy. OBJECTIVE In the present study we have explored the anti-cancer potentiality of the hydro-ethanolic extract (50% and 70%) of the whole flower of Nymphaea caerulea against the Acute Myeloid Leukaemia cell line, THP-1 with control of normal human kidney epithelial cell line (HEK 293). The present study is a novel contribution to the existing scientific knowledge as at present no study as an anti-leukaemic agent is available on N. caerulea (blue lotus) extract and exploring its action mechanism on in-vitro cell line model. METHODS Some targeted cytokine and apoptotic genes genes to deduce the anti-cancer mechanism of action of the crude extract (hydro-ethanolic extract (50% and 70%) of the whole flower) were selected as Interferon (IFN) γ, Interleukins - IL-6, IL-8, IL- 10, IL-1β, Transforming Growth Factor (TGF β1), Tumor Necrosis Factor (TNF α), Caspase 3(CAS 3), Caspase 9 (CAS 9), CD95 (Fas), Tumor Necrosis Factor Receptor 1 (TNFRSF1A) to observe relative fold changes of the expression using Real-Time PCR with housekeeping gene β-actin. Cellular cytopathic effect (CPE), cell viability assay by methylene blue assay, and cell cytotoxicity of the crude extract against the THP-1 cell line were also studied along with it's bio-active compositional analysis of the extract was explored using ultra-performance liquid chromatography followed by mass spectra. RESULTS The N. caerulea flower extract is capable of inducing apoptosis in AML and it can balance cytokine alterations in such diseases. CONCLUSIONS Nymphaea caerulea flower extract appears to be a good anti-leukemia agent.
Collapse
Affiliation(s)
| | | | | | - Satadal Das
- Tissue Culture Laboratory, Department of Biotechnology, Heritage Institute of Technology, Kolkata, India.
| |
Collapse
|
7
|
Fang Z, Jiang J, Zheng X. Interleukin-1 receptor antagonist: An alternative therapy for cancer treatment. Life Sci 2023; 335:122276. [PMID: 37977354 DOI: 10.1016/j.lfs.2023.122276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine and a naturally occurring antagonist of the IL-1 receptor. It effectively counteracts the IL-1 signaling pathway mediated by IL-1α/β. Over the past few decades, accumulating evidence has suggested that IL-1 signaling plays an essential role in tumor formation, growth, and metastasis. Significantly, anakinra, the first United States Food and Drug Administration (FDA)-approved IL-1Ra drug, has demonstrated promising antitumor effects in animal studies. Numerous clinical trials have subsequently incorporated anakinra into their cancer treatment protocols. In this review, we comprehensively discuss the research progress on the role of IL-1 in tumors and summarize the significant contribution of IL-1Ra (anakinra) to tumor immunity. Additionally, we analyze the potential value of IL-1Ra as a biomarker from a clinical perspective. This review is aimed to highlight the important link between inflammation and cancer and provide potential drug targets for future cancer therapy.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Olivera I, Luri-Rey C, Teijeira A, Eguren-Santamaria I, Gomis G, Palencia B, Berraondo P, Melero I. Facts and Hopes on Neutralization of Protumor Inflammatory Mediators in Cancer Immunotherapy. Clin Cancer Res 2023; 29:4711-4727. [PMID: 37522874 DOI: 10.1158/1078-0432.ccr-22-3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
In cancer pathogenesis, soluble mediators are responsible for a type of inflammation that favors the progression of tumors. The mechanisms chiefly involve changes in the cellular composition of the tumor tissue stroma and in the functional modulation of myeloid and lymphoid leukocytes. Active immunosuppression, proangiogenesis, changes in leukocyte traffic, extracellular matrix remodeling, and alterations in tumor-antigen presentation are the main mechanisms linked to the inflammation that fosters tumor growth and metastasis. Soluble inflammatory mediators and their receptors are amenable to various types of inhibitors that can be combined with other immunotherapy approaches. The main proinflammatory targets which can be interfered with at present and which are under preclinical and clinical development are IL1β, IL6, the CXCR1/2 chemokine axis, TNFα, VEGF, leukemia inhibitory factor, CCL2, IL35, and prostaglandins. In many instances, the corresponding neutralizing agents are already clinically available and can be repurposed as a result of their use in other areas of medicine such as autoimmune diseases and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Belen Palencia
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Trova S, Lin F, Lomada S, Fenton M, Chauhan B, Adams A, Puri A, Di Maio A, Wieland T, Sewell D, Dick K, Wiseman D, Wilks DP, Goodall M, Drayson MT, Khanim FL, Bunce CM. Pathogen and human NDPK-proteins promote AML cell survival via monocyte NLRP3-inflammasome activation. PLoS One 2023; 18:e0288162. [PMID: 37418424 PMCID: PMC10328239 DOI: 10.1371/journal.pone.0288162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
A history of infection has been linked with increased risk of acute myeloid leukaemia (AML) and related myelodysplastic syndromes (MDS). Furthermore, AML and MDS patients suffer frequent infections because of disease-related impaired immunity. However, the role of infections in the development and progression of AML and MDS remains poorly understood. We and others previously demonstrated that the human nucleoside diphosphate kinase (NDPK) NM23-H1 protein promotes AML blast cell survival by inducing secretion of IL-1β from accessory cells. NDPKs are an evolutionary highly conserved protein family and pathogenic bacteria secrete NDPKs that regulate virulence and host-pathogen interactions. Here, we demonstrate the presence of IgM antibodies against a broad range of pathogen NDPKs and more selective IgG antibody activity against pathogen NDPKs in the blood of AML patients and normal donors, demonstrating that in vivo exposure to NDPKs likely occurs. We also show that pathogen derived NDPK-proteins faithfully mimic the catalytically independent pro-survival activity of NM23-H1 against primary AML cells. Flow cytometry identified that pathogen and human NDPKs selectively bind to monocytes in peripheral blood. We therefore used vitamin D3 differentiated monocytes from wild type and genetically modified THP1 cells as a model to demonstrate that NDPK-mediated IL-1β secretion by monocytes is NLRP3-inflammasome and caspase 1 dependent, but independent of TLR4 signaling. Monocyte stimulation by NDPKs also resulted in activation of NF-κB and IRF pathways but did not include the formation of pyroptosomes or result in pyroptotic cell death which are pivotal features of canonical NLRP3 inflammasome activation. In the context of the growing importance of the NLRP3 inflammasome and IL-1β in AML and MDS, our findings now implicate pathogen NDPKs in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Sandro Trova
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Fei Lin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Santosh Lomada
- Institute of Experimental and Clinical Pharmacology and Toxicology, Heidelberg University, Mannheim, Germany
| | - Matthew Fenton
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Bhavini Chauhan
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandra Adams
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Avani Puri
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alessandro Di Maio
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Heidelberg University, Mannheim, Germany
| | - Daniel Sewell
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Kirstin Dick
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Wiseman
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Deepti P. Wilks
- Cancer Research UK Manchester Institute, Manchester Cancer Research Centre Biobank, The University of Manchester, Manchester, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Farhat L. Khanim
- Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
10
|
Kong Y, Tang L, You Y, Li Q, Zhu X. Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Front Immunol 2023; 14:1063454. [PMID: 36761742 PMCID: PMC9905114 DOI: 10.3389/fimmu.2023.1063454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T-cell) therapy has been well researched to date because of its ability to target malignant tumor cells. The most common CAR-T cells are CD19 CAR-T cells, which play a large role in B-cell leukemia treatment. However, most CAR-T cells are associated with relapse after clinical treatment, so the quality and persistence of CAR-T cells need to be improved. With continuous optimization, there have been four generations of CARs and each generation of CARs has better quality and durability than the previous generation. In addition, it is important to increase the proportion of memory cells in CAR-T cells. Studies have shown that an immunosuppressive tumor microenvironment (TME) can lead to dysfunction of CAR-T cells, resulting in decreased cell proliferation and poor persistence. Thus, overcoming the challenges of immunosuppressive molecules and targeting cytokines in the TME can also improve CAR-T cell persistence. In this paper, we explored how to improve the durability of CAR-T cell therapy by improving the structure of CARs, increasing the proportion of memory CAR-T cells and improving the TME.
Collapse
Affiliation(s)
- Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
IL-1β, an important cytokine affecting Helicobacter pylori-mediated gastric carcinogenesis. Microb Pathog 2023; 174:105933. [PMID: 36494022 DOI: 10.1016/j.micpath.2022.105933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is prevalent around the world and responsible for gastric cancer (GC). The development of GC from gastritis is closely associated with the bacterial virulence and the body's immune response ability. In this process, interleukin-1β (IL-1β) plays an important role. Under H. pylori infection, IL-1β is highly expressed that result in gastric acid inhibition, GC-related gene methylations and disfunctions, angiogenesis. Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediates IL-1β maturation in cells such as macrophages, neutrophils and dendritic cells. But how does IL-1β get released across the cell membrane still unclear. In this review, we focus on the secretion mechanism of IL-1β across the membrane, and to explore the role of IL-1β in the progression of GC.
Collapse
|
12
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
13
|
Della Guardia L, Codella R. Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions. Cytokine Growth Factor Rev 2021; 62:83-93. [PMID: 34620559 DOI: 10.1016/j.cytogfr.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022]
Abstract
Metabolic conditions share a common low-grade inflammatory milieu, which represents a key-factor for their ignition and maintenance. Exercise is instrumental for warranting systemic cardio-metabolic balance, owing to its regulatory effect on inflammation. This review explores the effect of physical activity in the modulation of sub-inflammatory framework characterizing dysmetabolic conditions. Regular exercise suppresses plasma levels of TNFα, IL-1β, FFAs and MCP-1, in dysmetabolic subjects. In addition, a single session of training increases the anti-inflammatory IL-10, IL-1 receptor antagonist (IL-1ra), and muscle-derived IL-6, mitigating low-grade inflammation. Resting IL-6 levels are decreased in trained-dysmetabolic subjects, compared to sedentary. On the other hand, the acute release of muscle-IL-6, after exercise, seems to exert a regulatory effect on the metabolic and inflammatory balance. In fact, muscle-released IL-6 is presumably implicated in fat loss and boosts plasma levels of IL-10 and IL-1ra. The improvement of adipose tissue functionality, following regular exercise, is also critical for the mitigation of sub-inflammation. This effect is likely mediated by muscle-released IL-15 and IL-6 and partly relies on the brown-shifting of white adipocytes, induced by exercise. In obese-dysmetabolic subjects, moderate training is shown to restore gut-microbiota health, and this mitigates the translocation of bacterial-LPS into bloodstream. Finally, regular exercise can lower plasma advanced glycated endproducts. The articulated physiology of circulating mediators and the modulating effect of the pathophysiological background, render the comprehension of the exercise-regulatory effect on sub-inflammation a key issue, in dysmetabolism.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy.
| |
Collapse
|