1
|
Xu Q, Hu J, Wang Y, Wang Z. The role of tumor types in immune-related adverse events. Clin Transl Oncol 2024:10.1007/s12094-024-03798-6. [PMID: 39738878 DOI: 10.1007/s12094-024-03798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block inhibitors of T cell activation and function. With the widespread use of ICIs in cancer therapy, immune-related adverse events (irAEs) have gradually emerged as urgent clinical issues. Tumors not only exhibit high heterogeneity, and their response to ICIs varies, with "hot" tumors showing better anti-tumor effects but also a higher susceptibility to irAEs. The manifestation of irAEs displays a tumor-heterogeneous pattern, correlating with the tumor type in terms of the affected organs, incidence, median onset time, and severity. Understanding the mechanisms underlying the pathogenic patterns of irAEs can provide novel insights into the prevention and management of irAEs, guide the development of biomarkers, and contribute to a deeper understanding of the toxicological characteristics of ICIs. In this review, we explore the impact of tumor type on the therapeutic efficacy of ICIs and further elucidate how these tumor types influence the occurrence of irAEs. Finally, we assess key candidate biomarkers and their relevance to proposed irAE mechanisms. This paper also outlines management strategies for patients with various types of tumors, based on their disease patterns.
Collapse
Affiliation(s)
- Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| |
Collapse
|
2
|
Wyss N, Berner F, Walter V, Jochum AK, Purde MT, Abdou MT, Sinnberg T, Hofmeister K, Pop OT, Hasan Ali O, Bauer J, Cheng HW, Lütge M, Klümper N, Diem S, Kosaloglu-Yalcin Z, Zhang Y, Sellmer L, Macek B, Karbach J, König D, Läubli H, Zender L, Meyer BS, Driessen C, Schürch CM, Jochum W, Amaral T, Heinzerling L, Cozzio A, Hegazy AN, Schneider T, Brutsche MH, Sette A, Lenz TL, Walz J, Rammensee HG, Früh M, Jäger E, Becher B, Tufman A, Nuñez N, Joerger M, Flatz L. Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. Am J Respir Crit Care Med 2024; 210:919-930. [PMID: 38626354 DOI: 10.1164/rccm.202311-2136oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Immune checkpoint inhibitor (ICI)-related pneumonitis is a serious autoimmune event affecting as many as 20% of patients with non-small-cell lung cancer (NSCLC), yet the factors underpinning its development in some patients and not others are poorly understood. Objectives: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. Methods: The study cohort consisted of patients with NSCLC who provided blood samples before and during ICI treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T-cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with NSCLC and patients with melanoma. Measurements and Main Results: Across both cohorts, patients in whom pneumonitis developed had higher pretreatment levels of immunoglobulin G autoantibodies targeting surfactant protein (SP)-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ IFN-γ-positive SP-B-specific T cells and expanding T-cell clonotypes recognizing this protein, accompanied by a proinflammatory serum proteomic profile. Conclusions: Our data suggest that the cooccurrence of SP-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pretreatment levels of these antibodies may represent a potential biomarker for an increased risk of developing pneumonitis, and on-treatment levels may provide a diagnostic aid.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tübingen
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Omar Hasan Ali
- Institute of Immunobiology
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jens Bauer
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Peptide-based Immunotherapy, Institute of Immunology, University Hospital Tübingen, and
| | | | | | - Niklas Klümper
- Institute for Experimental Oncology
- Center for Integrated Oncology Cologne/Bonn, and
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Zeynep Kosaloglu-Yalcin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California
| | - Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Laura Sellmer
- Department of Medicine V, University Hospital, and
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Boris Macek
- Quantitative Proteomics, Interfaculty Institute of Cell Biology, Faculty of Science
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - David König
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lars Zender
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, University of Tübingen, Tübingen, Germany
- German Cancer Research Consortium, partner site Tübingen, German Cancer Research Center, Heidelberg, Germany
| | - Britta S Meyer
- Research Unit Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | | | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | | | | | - Lucie Heinzerling
- Department of Dermatology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Ahmed N Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Tino Schneider
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin H Brutsche
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Tobias L Lenz
- Research Unit Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Juliane Walz
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Peptide-based Immunotherapy, Institute of Immunology, University Hospital Tübingen, and
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium and German Cancer Research Center, partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Institute of Immunology
- German Cancer Consortium and German Cancer Research Center, partner site Tübingen, Tübingen, Germany
| | - Martin Früh
- Department of Oncology and Hematology
- Department of Oncology, University of Bern, Bern, Switzerland
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; and
| | - Amanda Tufman
- Department of Medicine V, University Hospital, and
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Nicolas Nuñez
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba y Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | | | - Lukas Flatz
- Institute of Immunobiology
- Department of Dermatology, and
- Department of Dermatology, University Hospital Tübingen
| |
Collapse
|
3
|
Purde MT, Cupovic J, Palmowski YA, Makky A, Schmidt S, Rochwarger A, Hartmann F, Stemeseder F, Lercher A, Abdou MT, Bomze D, Besse L, Berner F, Tüting T, Hölzel M, Bergthaler A, Kochanek S, Ludewig B, Lauterbach H, Orlinger KK, Bald T, Schietinger A, Schürch CM, Ring SS, Flatz L. A replicating LCMV-based vaccine for the treatment of solid tumors. Mol Ther 2024; 32:426-439. [PMID: 38058126 PMCID: PMC10861942 DOI: 10.1016/j.ymthe.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.
Collapse
Affiliation(s)
- Mette-Triin Purde
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Yannick A Palmowski
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Ahmad Makky
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | | | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | | | - Alexander Lercher
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Marie-Therese Abdou
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - David Bomze
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Bergthaler
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | | | | | - Tobias Bald
- QIMR Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland.
| |
Collapse
|
4
|
Soussan S, Pupier G, Cremer I, Joubert PE, Sautès-Fridman C, Fridman W, Sibéril S. Unraveling the complex interplay between anti-tumor immune response and autoimmunity mediated by B cells and autoantibodies in the era of anti-checkpoint monoclonal antibody therapies. Front Immunol 2024; 15:1343020. [PMID: 38318190 PMCID: PMC10838986 DOI: 10.3389/fimmu.2024.1343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Berner F, Flatz L. Autoimmunity in immune checkpoint inhibitor-induced immune-related adverse events: A focus on autoimmune skin toxicity and pneumonitis. Immunol Rev 2023; 318:37-50. [PMID: 37548043 DOI: 10.1111/imr.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. However, their use is frequently associated with immune-related adverse events (irAEs) potentially affecting any organ. The mechanisms mediating such irAEs remain poorly understood and biomarkers to predict the development of irAEs are lacking. Growing evidence shows the importance of self-antigens in mediating irAEs during ICI therapy, in particular the well-described melanocyte differentiation antigens in melanoma patients. This review will focus on two novel classes of self-antigens involved in mediating autoimmune skin toxicity and pneumonitis in non-small cell lung cancer patients treated with immunotherapy. T cells specific for these self-antigens are thought to not only mediate irAEs but are thought to simultaneously mediate anti-tumor responses and are therefore associated with both autoimmune toxicity and response to ICI therapy. We further discuss emerging cellular and proteomic immune signatures of irAEs that may serve as biomarkers to help predict which patients are at higher risk of developing these irAEs. The determination of new tumor antigens involved in ICI therapy and the identification of related biomarkers brings us a step forward in the mechanistic understanding of ICIs and will help to monitor patients at higher risk of developing irAEs. Lastly, we discuss the current challenges in collecting research samples for the study of ICI-related mechanisms and in distinguishing between immune signatures of response and those of irAEs.
Collapse
Affiliation(s)
- Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
- Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
6
|
Fu J, Cao Z, Zhang J, Chen Q, Wang Y, Wang S, Fang X, Xu X. Identification of two immune-related risk score signatures through integrated analysis of multi-omics data in hepatocellular carcinoma. Gene X 2022; 829:146519. [PMID: 35447248 DOI: 10.1016/j.gene.2022.146519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Immunotherapy has become a major treatment for advanced HCC, but the therapeutic effects remain unsatisfactory. In this study, we constructed an immune cell risk score (ICS) and an immune cell-related gene risk score (ICRGS) for the prognosis prediction of HCC through integrated analysis of bulk and single-cell RNA (scRNA) sequencing data. These two risk score signatures both showed good predictive values in the training and validation cohorts. The potential interactions among these prognostic immune cell types were elucidated by cell-cell communication analysis. The results of enrichment analysis and gene set enrichment analysis (GSEA) of the prognostic genes showed that metabolic-related processes were involved in the immune response of HCC. Furthermore, the results of correlation analyses further confirmed the hub genes that were strongly correlated with immune cells. Finally, potential therapeutic drugs targeting these hub genes were screened by CellMiner based on NCI-60 cell line set. Taken together, two useful models for the prognosis prediction of HCC patients were constructed in this study. The functional differences between the two groups of HCC patients separated by ICS or ICRGS provide fundamental knowledge for finding synergistic therapeutic targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenyu Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ju Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China; Department of General Surgery, South China Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|