1
|
Dai X, Feng S, Zheng Y. Cold Atmospheric Plasma: Possible Cure of Autoimmune Disorders and Cancer via Attenuating Inflammation. Int J Biol Sci 2024; 20:5436-5449. [PMID: 39494336 PMCID: PMC11528447 DOI: 10.7150/ijbs.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases and cancers, two seemingly unrelated diseases, have been threatening human health, and many of them have no cure. By identifying pathological inflammation as the driving cause of uncontrolled cell proliferation in both classes of diseases, and differentiating autoimmune disorders and cancers by whether the cell death programs are under control, we propose the attenuation of prolonged inflammation via maintaining mitochondrial reduction-oxidation (redox) homeostasis being a possible cure of both diseases. Importantly, we propose the feasibility of applying cold atmospheric plasma (CAP) in treating autoimmune disorders and cancers given its redox-modulatory nature, which not only extends the medical utilities of CAP to autoimmune diseases and all other inflammation-driven disorders, but also positions the efficacy of CAP against cancer cells to its suppressive role on prolonged inflammation. Our insights may open an innovative avenue towards a unified view on the molecular mechanism driving the diversified types of medical miracles of CAP and what CAP can do in the field of plasma medicine.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
2
|
Vergani-Junior CA, Moro RDP, Pinto S, De-Souza EA, Camara H, Braga DL, Tonon-da-Silva G, Knittel TL, Ruiz GP, Ludwig RG, Massirer KB, Mair WB, Mori MA. An Intricate Network Involving the Argonaute ALG-1 Modulates Organismal Resistance to Oxidative Stress. Nat Commun 2024; 15:3070. [PMID: 38594249 PMCID: PMC11003958 DOI: 10.1038/s41467-024-47306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.
Collapse
Affiliation(s)
- Carlos A Vergani-Junior
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Raíssa De P Moro
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Silas Pinto
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Section on Integrative Physiology & Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Deisi L Braga
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Gabriel P Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Center of Medicinal Chemistry (CQMED), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Program in Genetics and Molecular Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Meléndez-Zempoalteca A, Juárez-González VR, Rudiño-Piñera E, Pastor N, Vargas-Jaimes L, Valcarcel-Gamiño JA, Vázquez-Vuelvas OF, Quintero-Hernández V, Valdez-Velázquez LL. Antivenom Derived from the Ct1a and Ct17 Recombinant Toxins of the Scorpion Centruroides tecomanus. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Tsitsipatis D, Martindale JL, Ubaida‐Mohien C, Lyashkov A, Yanai H, Kashyap A, Shin CH, Herman AB, Ji E, Yang J, Munk R, Dunn C, Lukyanenko Y, Yang X, Chia CW, Karikkineth AC, Zukley L, D’Agostino J, Kaileh M, Cui C, Beerman I, Ferrucci L, Gorospe M. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 2022; 21:e13609. [PMID: 35429111 PMCID: PMC9124301 DOI: 10.1111/acel.13609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ceereena Ubaida‐Mohien
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Alexey Lyashkov
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Hagai Yanai
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Amogh Kashyap
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang Hoon Shin
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Eunbyul Ji
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Christopher Dunn
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Yevgeniya Lukyanenko
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Xiaoling Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chee W. Chia
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ajoy C. Karikkineth
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Linda Zukley
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jarod D’Agostino
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Mary Kaileh
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang‐Yi Cui
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Isabel Beerman
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| |
Collapse
|
5
|
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics 2021; 14:43-58. [PMID: 34875856 DOI: 10.2217/epi-2021-0371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination and SUMOylation are two essential components of the ubiquitination proteasome system playing fundamental roles in protein homeostasis maintenance and signal transduction, perturbation of which is associated with tumorigenesis. By comparing the mechanisms of ubiquitination and SUMOylation, assessing their crosstalk, reviewing their differential associations with cancer and identifying unaddressed yet important questions that may lead the field trend, this review sheds light on the similarities and differences of ubiquitination and SUMOylation toward the improved harnessing of both post-translational modification machineries, as well as forecasts novel onco-therapeutic opportunities through cell homeostasis control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Tongxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Dong Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China.,Wuxi People's Hospital, Wuxi, 214023, China.,Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
7
|
S Narasimhan KK, Devarajan A, Karan G, Sundaram S, Wang Q, van Groen T, Monte FD, Rajasekaran NS. Reductive stress promotes protein aggregation and impairs neurogenesis. Redox Biol 2020; 37:101739. [PMID: 33242767 PMCID: PMC7695986 DOI: 10.1016/j.redox.2020.101739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Redox homeostasis regulates key cellular signaling in both physiology and pathology. While perturbations result in shifting the redox homeostasis towards oxidative stress are well documented, the influence of reductive stress (RS) in neurodegenerative diseases and its mechanisms are unknown. Here, we postulate that a redox shift towards the reductive arm (through the activation of Nrf2 signaling) will damage neurons and impair neurogenesis. In proliferating and differentiating neuroblastoma (Neuro 2a/N2a) cells, sulforaphane-mediated Nrf2 activation resulted in increased transcription/translation of antioxidants and glutathione (GSH) production along with significantly declined ROS in a dose-dependent manner leading to a reductive-redox state (i.e. RS). Interestingly, this resulted in endoplasmic reticulum (ER) stress leading to subsequent protein aggregation/proteotoxicity in neuroblastoma cells. Under RS, we also observed elevated Tau/α-synuclein and their co-localization with other protein aggregates in these cells. Surprisingly, we noticed that acute RS impaired neurogenesis as evidenced from reduced neurite outgrowth/length. Furthermore, maintaining the cells in a sustained RS condition (for five consecutive generations) dramatically reduced their differentiation and prevented the formation of axons (p < 0.05). This impairment in RS mediated neurogenesis occurs through the alteration of Tau dynamics i.e. RS activates the pathogenic GSK3β/Tau cascade thereby promoting the phosphorylation of Tau leading to proteotoxicity. Of note, intermittent withdrawal of sulforaphane from these cells suppressed the proteotoxic insult and re-activated the differentiation process. Overall, this results suggest that either acute or chronic RS could hamper neurogenesis through GSK3β/TAU signaling and proteotoxicity. Therefore, investigations identifying novel redox mechanisms impacting proteostasis are crucial to preserve neuronal health.
Collapse
Affiliation(s)
- Kishore Kumar S Narasimhan
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA
| | - Asokan Devarajan
- Department of Medicine, Division of Cardiology, Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, United States
| | - Goutam Karan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical University & Research Institute, Chennai, India
| | - Qin Wang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas van Groen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Parakh S, Shadfar S, Perri ER, Ragagnin AMG, Piattoni CV, Fogolín MB, Yuan KC, Shahheydari H, Don EK, Thomas CJ, Hong Y, Comini MA, Laird AS, Spencer DM, Atkin JD. The Redox Activity of Protein Disulfide Isomerase Inhibits ALS Phenotypes in Cellular and Zebrafish Models. iScience 2020; 23:101097. [PMID: 32446203 PMCID: PMC7240177 DOI: 10.1016/j.isci.2020.101097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in almost all cases of amyotrophic lateral sclerosis (ALS), and 20% of familial ALS cases are due to mutations in superoxide dismutase 1 (SOD1). Redox regulation is critical to maintain cellular homeostasis, although how this relates to ALS is unclear. Here, we demonstrate that the redox function of protein disulfide isomerase (PDI) is protective against protein misfolding, cytoplasmic mislocalization of TDP-43, ER stress, ER-Golgi transport dysfunction, and apoptosis in neuronal cells expressing mutant TDP-43 or SOD1, and motor impairment in zebrafish expressing mutant SOD1. Moreover, previously described PDI mutants present in patients with ALS (D292N, R300H) lack redox activity and were not protective against ALS phenotypes. Hence, these findings implicate the redox activity of PDI centrally in ALS, linking it to multiple cellular processes. They also imply that therapeutics based on PDI's redox activity will be beneficial in ALS.
Collapse
Affiliation(s)
- Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Sina Shadfar
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Audrey M G Ragagnin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claudia V Piattoni
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Mariela B Fogolín
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Kristy C Yuan
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Hamideh Shahheydari
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily K Don
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Collen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Marcelo A Comini
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay; Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Angela S Laird
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
9
|
Yang Y, Cheung HH, Zhang C, Wu J, Chan WY. Melatonin as Potential Targets for Delaying Ovarian Aging. Curr Drug Targets 2020; 20:16-28. [PMID: 30156157 DOI: 10.2174/1389450119666180828144843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
In previous studies, oxidative stress damage has been solely considered to be the mechanism of ovarian aging, and several antioxidants have been used to delay ovarian aging. But recently, more reports have found that endoplasmic reticulum stress, autophagy, sirtuins, mitochondrial dysfunction, telomeres, gene mutation, premature ovarian failure, and polycystic ovary syndrome are all closely related to ovarian aging, and these factors all interact with oxidative stress. These novel insights on ovarian aging are summarized in this review. Furthermore, as a pleiotropic molecule, melatonin is an important antioxidant and used as drugs for several diseases treatment. Melatonin regulates not only oxidative stress, but also the various molecules, and normal and pathological processes interact with ovarian functions and aging. Hence, the mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein. This systematic review supply new insights into ovarian aging and the use of melatonin to delay its onset, further supply a novel drug of melatonin for ovarian aging treatment.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China
| | - Hoi-Hung Cheung
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China.,Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wai-Yee Chan
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| |
Collapse
|
10
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
11
|
Guerrero-Gómez D, Mora-Lorca JA, Sáenz-Narciso B, Naranjo-Galindo FJ, Muñoz-Lobato F, Parrado-Fernández C, Goikolea J, Cedazo-Minguez Á, Link CD, Neri C, Sequedo MD, Vázquez-Manrique RP, Fernández-Suárez E, Goder V, Pané R, Cabiscol E, Askjaer P, Cabello J, Miranda-Vizuete A. Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death Differ 2019; 26:1545-1565. [PMID: 30770874 DOI: 10.1038/s41418-018-0270-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023] Open
Abstract
In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.
Collapse
Affiliation(s)
- David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - José Antonio Mora-Lorca
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.,Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | | | - Francisco José Naranjo-Galindo
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Fernando Muñoz-Lobato
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | - Cristina Parrado-Fernández
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Julen Goikolea
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Ángel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, SE-14186, Sweden
| | - Christopher D Link
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Christian Neri
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), F-75252, Paris, France
| | - María Dolores Sequedo
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Rafael P Vázquez-Manrique
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Elena Fernández-Suárez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Veit Goder
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Roser Pané
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), 26006, Logroño, Spain.
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
12
|
Long-Term Exercise Protects against Cellular Stresses in Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2894247. [PMID: 29765493 PMCID: PMC5889853 DOI: 10.1155/2018/2894247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023]
Abstract
The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP), redox regulation, and endoplasmic reticulum (ER) stress markers in tibialis anterior (T.A.) and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old), old-sedentary (OS, 24-month-old), and old-exercise (OE, 24-month-old) groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP) level, lower thioredoxin-1 (TRX-1) to TxNiP ratio—a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.
Collapse
|