1
|
J LAA, Pa P, Seng CY, Rhee JH, Lee SE. Protein nanocages: A new frontier in mucosal vaccine delivery and immune activation. Hum Vaccin Immunother 2025; 21:2492906. [PMID: 40353600 DOI: 10.1080/21645515.2025.2492906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/15/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Mucosal infectious diseases represent a significant global health burden, impacting millions of people worldwide through pathogens that invade the respiratory, gastrointestinal, and urogenital tracts. Mucosal vaccines provide a promising strategy to combat these diseases by preventing pathogens from entering through the portals as well as within the systemic response compartment. However, challenges such as antigen instability, inefficient delivery, suboptimal immune activation, and the complex biology of mucosal barriers hinder their development. These limitations require integrating specialized adjuvants and delivery systems. Protein nanocages, self-assembling nanoscale structures that can be engineered, may provide an innovative solution for co-delivering antigens and adjuvants. With their remarkable stability, biocompatibility, and design versatility, protein nanocages can potentially overcome existing challenges in mucosal vaccine delivery and enhance protective immune responses. This review highlights the potential of protein nanocages to revolutionize mucosal vaccine development by addressing these challenges.
Collapse
Affiliation(s)
- Lavanya Agnes Angalene J
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Paopachapich Pa
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Chheng Y Seng
- Department of Biomedical Sciences, Chonnam National University, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Joon Haeng Rhee
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
| | - Shee Eun Lee
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Felton LA, Binzet G, Wiley C, McChesney D, McConville J, Ҫelik M, Muttil P. Spray drying Eudragit® E-PO with acetaminophen using 2- and 3-fluid nozzles for taste masking. Int J Pharm 2024; 658:124191. [PMID: 38701909 PMCID: PMC11139551 DOI: 10.1016/j.ijpharm.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Conventional spray drying using a 2-fluid nozzle forms matrix microparticles, where drug is distributed throughout the particle and may not effectively mask taste. In contrast, spray drying using a 3-fluid nozzle has been reported to encapsulate material. The objective of this study was to spray dry Eudragit® E-PO (EE) with acetaminophen (APAP), a water-soluble model drug with a bitter taste, using 2- and 3-fluid nozzles for taste masking. Spray drying EE with APAP, however, resulted in yields of ≤ 13 %, irrespective of nozzle configuration. Yields improved when Eudragit® L 100-55 (EL) or Methocel® E6 (HPMC) was used in the inner fluid stream of the 3-fluid nozzle or in place of EE for the 2-fluid nozzle. Drug release from microparticles prepared with the 2-fluid nozzle was relatively rapid. Using EE in the outer fluid stream of the 3-fluid nozzle resulted in comparatively slower drug release, although drug release was observed, indicating that encapsulation was incomplete. Results from these studies also show that miscible polymers used in the two fluid streams mix during the spray drying process. In addition, findings from this study indicate that the polymer used in the inner fluid stream can impact drug release.
Collapse
Affiliation(s)
- Linda A Felton
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Gülşilan Binzet
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA; Altınbaş University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Bakırköy 34147 İstanbul, Turkey.
| | - Cody Wiley
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - David McChesney
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jason McConville
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Metin Ҫelik
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA; Pharmaceutical Technologies International, Inc., 22 Durham Rd, Skillman, NJ 08558, USA.
| | - Pavan Muttil
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Zhang J, Wang K, Xu S, Chen L, Gu H, Yang Y, Zhao Q, Huo Y, Li B, Wang Y, Xie Y, Li N, Zhang J, Zhang J, Li Q. Silk Fibroin-Coated Nano-MOFs Enhance the Thermal Stability and Immunogenicity of HBsAg. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8346-8364. [PMID: 38323561 DOI: 10.1021/acsami.3c16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vaccines are widely regarded as one of the most effective weapons in the fight against infectious diseases. Currently, vaccines must be stored and transported at low temperatures as high temperatures can lead to a loss of vaccine conformation and reduced therapeutic efficacy. Metal-organic frameworks (MOFs), such as zeolitic imidazole framework-8 (ZIF-8), are a new class of hybrid materials with large specific surface areas, high loading rates, and good biocompatibility and are successful systems for vaccine delivery and protection. Silk fibroin (SF) has a good biocompatibility and thermal stability. In this study, the hepatitis B surface antigen (HBsAg) was successfully encapsulated in ZIF-8 to form HBsAg@ZIF-8 (HZ) using a one-step shake and one-pot shake method. Subsequently, the SF coating modifies HZ through hydrophobic interactions to form HBsAg/SF@ZIF-8 (HSZ), which enhanced the thermal stability and immunogenicity of HBsAg. Compared to free HBsAg, HZ and HSZ improved the thermostability of HBsAg, promoted the antigen uptake and lysosomal escape, stimulated dendritic cell maturation and cytokine secretion, formed an antigen reservoir to promote antibody production, and activated CD4+ T and CD8+ T cells to enhance memory T-cell production. Importantly, HSZ induced a strong immune response even after 14 days of storage at 25 °C. Furthermore, the nanoparticles prepared by the one-step shake method exhibited superior properties compared to those prepared by the one-pot shake method. This study highlights the importance of SF-coated ZIF-8, which holds promise for investigating thermostable vaccines and breaking the vaccine cold chain.
Collapse
Affiliation(s)
- Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Shiyao Xu
- College of Life Sciences, Tonghua Normal University, Tonghua 134002, China
| | - Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiquan Gu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yujie Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qi Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yurou Huo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Bo Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yufei Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jiali Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| |
Collapse
|
4
|
Witeof AE, Meinerz NM, Walker KD, Funke HH, Garcea RL, Randolph TW. A Single Dose, Thermostable, Trivalent Human Papillomavirus Vaccine Formulated Using Atomic Layer Deposition. J Pharm Sci 2023; 112:2223-2229. [PMID: 36780987 PMCID: PMC10363232 DOI: 10.1016/j.xphs.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Formulations of human papillomavirus (HPV) 16, 18, and 31 L1 capsomere protein antigens were spray dried to obtain glassy microspheres that were then coated by atomic layer deposition (ALD) with nanometer-thin protective layers of alumina. Spray-drying was used to formulate human papillomavirus (HPV) 16, 18, and 31 L1 capsomere protein antigens within glassy microspheres to which nanoscopic protective layers of alumina were applied using ALD. Suspensions of alumina-coated, capsomere-containing microparticles were administered in a single dose to mice. ALD-deposited alumina coatings provided thermostability and a delayed in vivo release of capsomere antigens, incorporating both a prime and a boost dose in one injection. Total serotype-specific antibody titers as well as neutralizing titers determined from pseudovirus infectivity assays were unaffected by incubation of the ALD-coated vaccines for at 4, 50, or 70 °C for three months prior to administration. In addition, even after incubation for three months at 70 °C, single doses of ALD-coated vaccines produced both higher total antibody responses and higher neutralizing responses than control immunizations that used two doses of conventional liquid formulations stored at 4 °C.
Collapse
Affiliation(s)
- Alyssa E Witeof
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | | | | | - Hans H Funke
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Robert L Garcea
- The BioFrontiers Program, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
5
|
Morales CG, Jimenez NR, Herbst-Kralovetz MM, Lee NR. Novel Vaccine Strategies and Factors to Consider in Addressing Health Disparities of HPV Infection and Cervical Cancer Development among Native American Women. Med Sci (Basel) 2022; 10:52. [PMID: 36135837 PMCID: PMC9503187 DOI: 10.3390/medsci10030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the 4th most common type of cancer in women world-wide. Many factors play a role in cervical cancer development/progression that include genetics, social behaviors, social determinants of health, and even the microbiome. The prevalence of HPV infections and cervical cancer is high and often understudied among Native American communities. While effective HPV vaccines exist, less than 60% of 13- to 17-year-olds in the general population are up to date on their HPV vaccination as of 2020. Vaccination rates are higher among Native American adolescents, approximately 85% for females and 60% for males in the same age group. Unfortunately, the burden of cervical cancer remains high in many Native American populations. In this paper, we will discuss HPV infection, vaccination and the cervicovaginal microbiome with a Native American perspective. We will also provide insight into new strategies for developing novel methods and therapeutics to prevent HPV infections and limit HPV persistence and progression to cervical cancer in all populations.
Collapse
Affiliation(s)
- Crystal G. Morales
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicole R. Jimenez
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
6
|
Oral Papillomatosis: Its Relation with Human Papilloma Virus Infection and Local Immunity—An Update. Medicina (B Aires) 2022; 58:medicina58081103. [PMID: 36013570 PMCID: PMC9415166 DOI: 10.3390/medicina58081103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Oral papilloma lesions may appear as a result of HPV infection, or not, and only special molecular methods could differentiate them. Low-risk and high-risk HPV types could induce oral HPV papillomatosis with different natural evolution, clearance and persistence mechanisms. The pathogenic mechanisms are based on the crosstalk between the oral epithelial and immune cells and this very efficient virus. HPV acts as a direct inducer in the process of transforming a benign lesion into a malignant one, the cancerization process being also debated in this paper. According to the degree of malignity, three types of papillomatous lesions can be described in the oral cavity: benign lesions, potential malign disorders and malignant lesions. The precise molecular diagnostic is important to identify the presence of various virus types and also the virus products responsible for its oncogenicity. An accurate diagnostic of oral papilloma can be established through a good knowledge of etiological and epidemiological factors, clinical examination and laboratory tests. This review intends to update the pathogenic mechanisms driving the macroscopic and histological features of oral papillomatosis having HPV infection as the main etiological factor, focusing on its interreference in the local immunity. In the absence of an accurate molecular diagnostic and knowledge of local immunological conditions, the therapeutic strategy could be difficult to decide.
Collapse
|
7
|
Kumar R, Srivastava V, Baindara P, Ahmad A. Thermostable vaccines: an innovative concept in vaccine development. Expert Rev Vaccines 2022; 21:811-824. [PMID: 35285366 DOI: 10.1080/14760584.2022.2053678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccines represent one of the most common and safer ways of combating infectious diseases. Loss of potency owing to thermal denaturation or degradation of almost all the commercially available vaccines necessitates their storage, transportation, and final dissemination under refrigerated or deep-freeze conditions. However, maintenance of a continuous cold chain at every step raises the cost of vaccines significantly. A large number of life-saving vaccines are discarded before their application owing to exposure to sub-optimum temperatures. Therefore, there is a pressing need for the development of a thermostable vaccine with a long shelf life at ambient temperature. AREAS COVERED A literature search was performed to compile a list of different vaccines, along with their storage and handling conditions. Similarly, a separate list was prepared for different coronavirus vaccines which are in use against coronavirus disease 2019. A literature survey was also performed to look at different approaches undertaken globally to address the issue of the cold-chain problem. We emphasised the importance of yeast cells in the development of thermostable vaccines. In the end, we discussed why thermostable vaccines are required, not only in resource-poor settings in Asian and African countries but also for resource-rich settings in Europe and North America. EXPERT OPINION : Temperature change can severely impact the stability of various life-saving vaccines. Therefore, there is a pressing need for the development of thermostable vaccines with a long shelf life at ambient temperature.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco 94143, California, USA
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa
| | - Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65201, Missouri, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
8
|
Gomez M, Vehring R. Spray Drying and Particle Engineering in Dosage Form Design for Global Vaccines. J Aerosol Med Pulm Drug Deliv 2022; 35:121-138. [PMID: 35172104 DOI: 10.1089/jamp.2021.0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccines are a very important tool in the effort to reduce the global burden of infectious diseases. Modern vaccines can be formulated in several ways to induce specific immunity, including through the use of live bacteria, subunit antigens, and even genetic material. However, vaccines typically need to be transported and stored under controlled refrigerated or frozen conditions to maintain potency. This strict temperature control is incompatible with the available infrastructure in many developing countries. One method of improving the thermostability of a vaccine is through drying of a liquid presentation into a dry dosage form. In addition to enhancing the capability for distribution in resource-poor settings, these dry vaccine forms are more suitable for long-term stockpiling. Spray drying is a drying method that has been successfully used to stabilize many experimental vaccines into a dry form for storage above refrigerated temperatures. Additionally, the use of spray drying allows for the production of engineered particles suitable for respiratory administration. These particles can be further designed for increased out-of-package robustness against high humidity. Furthermore, there are already commercial dry powder delivery devices available that can be used to safely deliver vaccines to the respiratory system. The research in this field demonstrates that the resources to develop highly stable vaccines in flexible dosage forms are available and that these presentations offer many advantages for global vaccination campaigns.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Gomez M, Ahmed M, Das S, McCollum J, Mellett L, Swanson R, Gupta A, Carrigy NB, Wang H, Barona D, Bachchhav S, Gerhardt A, Press C, Archer MC, Liang H, Seydoux E, Kramer RM, Kuehl PJ, Vehring R, Khader SA, Fox CB. Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Front Pharmacol 2022; 12:799034. [PMID: 35126135 PMCID: PMC8814656 DOI: 10.3389/fphar.2021.799034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022] Open
Abstract
Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against Mycobacterium tuberculosis (Mtb) in a murine model when administered via different routes. Four administration routes for the spray-dried ID93+GLA-SE were evaluated along with relevant controls—1) reconstitution and intramuscular injection, 2) reconstitution and intranasal delivery, 3) nasal dry powder delivery via inhalation, and 4) pulmonary dry powder delivery via inhalation. Dry powder intranasal and pulmonary delivery was achieved using a custom nose-only inhalation device, and optimization using representative vaccine-free powder demonstrated that approximately 10 and 44% of the maximum possible delivered dose would be delivered for intranasal delivery and pulmonary delivery, respectively. Spray-dried powder was engineered according to the different administration routes including maintaining approximately equivalent delivered doses of ID93 and GLA. Vaccine properties of the different spray-dried lots were assessed for quality control in terms of nanoemulsion droplet diameter, polydispersity index, adjuvant content, and antigen content. Our results using the Mtb mouse challenge model show that both intranasal reconstituted vaccine delivery as well as pulmonary dry powder vaccine delivery resulted in Mtb control in infected mice comparable to traditional intramuscular delivery. Improved protection in these two vaccinated groups over their respective control groups coincided with the presence of cytokine-producing T cell responses. In summary, our results provide novel vaccine formulations and delivery routes that can be harnessed to provide protection against Mtb infection.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Joseph McCollum
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Leah Mellett
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Rosemary Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Nicholas B. Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shital Bachchhav
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Alana Gerhardt
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Ryan M. Kramer
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| |
Collapse
|
10
|
Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics. Pharm Res 2022; 39:3047-3061. [PMID: 36071354 PMCID: PMC9451127 DOI: 10.1007/s11095-022-03363-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022]
Abstract
Dry powder inhalation formulations have become increasingly popular for local and systemic delivery of small molecules and biotherapeutics. Powder formulations provide distinct advantages over liquid formulations such as elimination of cold chain due to room temperature stability, improved portability, and the potential for increasing patient adherence. To become a viable product, it is essential to develop formulations that are stable (physically, chemically and/or biologically) and inhalable over the shelf-life. Physical particulate properties such as particle size, morphology and density, as well as chemical properties can significantly impact aerosol performance of the powder. This review will cover these critical attributes that can be engineered to enhance the dispersibility of inhalation powder formulations. Challenges in particle engineering for biotherapeutics will be assessed, followed by formulation strategies for overcoming the hurdles. Finally, the review will discuss recent examples of successful dry powder biotherapeutic formulations for inhalation delivery that have been clinically assessed.
Collapse
|
11
|
Rossi I, Spagnoli G, Buttini F, Sonvico F, Stellari F, Cavazzini D, Chen Q, Müller M, Bolchi A, Ottonello S, Bettini R. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J Control Release 2021; 340:209-220. [PMID: 34740725 DOI: 10.1016/j.jconrel.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.
Collapse
Affiliation(s)
- Irene Rossi
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Stellari
- Chiesi Farmaceutici SpA, Largo Belloli 11a, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Quigxin Chen
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| |
Collapse
|
12
|
Preston KB, Randolph TW. Stability of lyophilized and spray dried vaccine formulations. Adv Drug Deliv Rev 2021; 171:50-61. [PMID: 33484735 DOI: 10.1016/j.addr.2021.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Liquid formulations of vaccines are subject to instabilities that result from degradation processes that proceed via a variety of physical and chemical pathways. In dried formulations, such as those prepared by lyophilization or spray drying, many of these degradation pathways may be avoided or inhibited. Thus, the stability of vaccine formulations can be enhanced significantly in the absence of bulk water. Potential advantages of dry vaccine formulations include extended shelf lives and less stringent cold-chain storage requirements, both of which offer possibilities of reduced vaccine wastage and facilitated distribution to resource-poor areas. Lyophilization and spray drying represent the most common methods of stabilizing vaccines through drying. This article reviews several lyophilized and spray dried vaccines that address a diverse set of pathogens, as well as some of the assays used to quantify their stability. Recent dry vaccine trends include needle-free delivery of dry powder via non-parenteral routes of administration and the incorporation of advanced vaccine adjuvants into formulations, which further contribute to the goal of increasing vaccine distribution to resource-poor areas. Challenges associated with development of these newer technologies are also discussed.
Collapse
Affiliation(s)
- Kendall B Preston
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America.
| |
Collapse
|
13
|
Dadari IK, Zgibor JC. How the use of vaccines outside the cold chain or in controlled temperature chain contributes to improving immunization coverage in low- and middle-income countries (LMICs): A scoping review of the literature. J Glob Health 2021; 11:04004. [PMID: 33692889 PMCID: PMC7915947 DOI: 10.7189/jogh.11.04004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Most vaccines are recommended for storage at temperatures of +2°C to +8°C to maintain potency. Immunization supply chain bottlenecks constraints reaching populations with life-saving vaccines. The World Health Organization permits the use of vaccines outside the cold chain as "controlled temperature chain (CTC)" upon meeting certain conditions and has set targets to license more vaccines CTC by 2020. OBJECTIVES This scoping review aims to explore and synthesize the evidence in the literature on how the use of vaccines outside the cold chain or in a controlled temperature chain increases immunization coverage in low and middle-income countries (LMICs), with a focus on the timelines of the Global Vaccine Action Plan (2011-2020). METHODS A systematic search of three online databases (PubMed, Embase, and Web of Science) due to their broad coverage of global health sciences retrieved 173 original peer-reviewed articles, of which 13 were included in the review having met our inclusion criteria. RESULTS The majority of the studies were conducted in Africa (n = 9), followed by Asia (n = 3), and the least in the Pacific (n = 1). The different study designs captured included four non-randomized trials, three randomized trials, two simulation models, two cross-sectional studies, and one cohort study. Reported benefits included increased coverage, logistical ease, cost savings while vaccines remain potent. CONCLUSION Currently, only two vaccines have been licensed to be stored CTC. More needs to be done to get additional vaccines licensed for CTC and disseminate operational guidance to operationalize its use in low- and middle-income countries.
Collapse
Affiliation(s)
- Ibrahim K Dadari
- College of Public Health, University of South Florida, Tampa, Florida, USA
- United Nations Children's Fund, Pacific Office, Solomon Islands
| | - Janice C Zgibor
- College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
14
|
Mabrouk MT, Huang WC, Deng B, Li-Purcell N, Seffouh A, Ortega J, Ekin Atilla-Gokcumen G, Long CA, Miura K, Lovell JF. Lyophilized, antigen-bound liposomes with reduced MPLA and enhanced thermostability. Int J Pharm 2020; 589:119843. [PMID: 32890653 DOI: 10.1016/j.ijpharm.2020.119843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022]
Abstract
Thermostability and decreased component costs are desirable features for adjuvanted, recombinant vaccines. We previously showed that a model malaria transmission-blocking vaccine candidate antigen, Pfs25, can be rendered more immunogenic when mixed with liposomes containing cobalt porphyrin-phospholipid (CoPoP) and a synthetic monophosphoryl lipid A (MPLA) variant. CoPoP can induce stable particle formation of recombinant antigens based on interaction with their polyhistidine tag. In the present work, different synthetic MPLA variants and concentrations were assessed in CoPoP liposomes. Long-term biophysical stability and immunogenicity were not adversely impacted by a 60% reduction in MPLA content. When admixed with Pfs25, the adjuvant formulations effectively induced functional antibodies in immunized mice and rabbits. Lyophilized, antigen-bound liposomes were formed using sucrose and trehalose cryoprotectants, which improved vaccine reconstitution for a variety of model antigens. Compared to liquid storage, the lyophilized Pfs25 and CoPoP liposomes exhibited thermostability with respect to size, biochemical integrity, binding capacity, protein folding and immunogenicity. Following 6 weeks of storage at 60 °C, the most extended storage period assessed, the lyophilized formulation induced functional antibodies in mice with immunization.
Collapse
Affiliation(s)
- Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nasi Li-Purcell
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A 0C7, Canada
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
15
|
Zimet GD, Osazuwa-Peters N. There's Much Yet to be Done: Diverse Perspectives on HPV Vaccination. Hum Vaccin Immunother 2020; 15:1459-1464. [PMID: 31365327 PMCID: PMC6746479 DOI: 10.1080/21645515.2019.1640559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Gregory D Zimet
- a Department of Pediatrics, School of Medicine, Indiana University , Indianapolis , IN , USA
| | - Nosayaba Osazuwa-Peters
- b Department of Otolaryngology-Head and Neck Surgery, Saint Louis University , St Louis , MO , USA
| |
Collapse
|
16
|
Yadav R, Zhai L, Tumban E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019; 12:v12010018. [PMID: 31877975 PMCID: PMC7019592 DOI: 10.3390/v12010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infections worldwide. Ninety percent of infected individuals clear the infection within two years; however, in the remaining 10% of infected individuals, the infection(s) persists and ultimately leads to cancers (anogenital cancers and head and neck cancers) and genital warts. Fortunately, three prophylactic vaccines have been approved to protect against HPV infections. The most recent HPV vaccine, Gardasil-9 (a nonavalent vaccine), protects against seven HPV types associated with ~90% of cervical cancer and against two HPV types associated with ~90% genital warts with little cross-protection against non-vaccine HPV types. The current vaccines are based on virus-like particles (VLPs) derived from the major capsid protein, L1. The L1 protein is not conserved among HPV types. The minor capsid protein, L2, on the other hand, is highly conserved among HPV types and has been an alternative target antigen, for over two decades, to develop a broadly protective HPV vaccine. The L2 protein, unlike the L1, cannot form VLPs and as such, it is less immunogenic. This review summarizes current studies aimed at developing HPV L2 vaccines by multivalently displaying L2 peptides on VLPs derived from bacteriophages and eukaryotic viruses. Recent data show that a monovalent HPV L1 VLP as well as bivalent MS2 VLPs displaying HPV L2 peptides (representing amino acids 17–36 and/or consensus amino acids 69–86) elicit robust broadly protective antibodies against diverse HPV types (6/11/16/18/26/31/33/34/35/39/43/44/45/51/52/53/56/58/59/66/68/73) associated with cancers and genital warts. Thus, VLP-based L2 vaccines look promising and may be favorable, in the near future, over current L1-based HPV vaccines and should be explored further.
Collapse
Affiliation(s)
- Rashi Yadav
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
| | - Lukai Zhai
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Current address: Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Correspondence: ; Tel.: +1-906-487-2256; Fax: +1-906-487-3167
| |
Collapse
|
17
|
Šterbenc A, Triglav T, Poljak M. An update on prophylactic human papillomavirus (HPV) vaccines: a review of key literature published between September 2018 and September 2019. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|