1
|
Shen T, Wang X, Zhang X, Pei J, Wang Z, Li Q, Zhao L. Engineering of Flavonoid 3'-O-Methyltransferase for Improved Biomodification of Fisetin in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40269570 DOI: 10.1021/acs.jafc.4c12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Fisetin is mainly extracted from Rhus succedanea L., but it is also found in a variety of foods, vegetables, and herbs, and is commonly used in dietary supplements for its health benefits. However, its limited stability, low oral bioavailability, and poor absorption hinder its developmental applications. Methylation modification has emerged as an effective strategy to enhance the solubility, stability, and lipid solubility of fisetin. In this study, we identified a novel 3'-O-methyltransferase, PeCCoAOMT, characterized its enzymatic properties in vitro, and investigated its potential for producing 3'-O-methylated fisetin in Escherichia coli. Through strain screening, selection of protein tags and plasmid vectors, and optimization of culture conditions, the strain BTP was fermented in Lysogeny broth medium containing 5 g/L glycerol for 48 h at 37 °C. Finally, the strain BTP produced 530.44 mg/L of 3'-O-methylated fisetin, with a molar conversion rate of 63.02%, representing a 6.63-fold increase in titer compared to the initial strain, which is the highest level reported to date. This study provides valuable insights into the engineering of flavonoid O-methyltransferases and lays the foundation for the high-level biosynthesis of engineered microbial methylated flavonoids.
Collapse
Affiliation(s)
- Tianyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang, Jiangsu 222001, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Chaulagain D, Shamabadi NS, Leslie SA, Karig DK. From Natural Microbe Screening to Sustained Chitinase Activity in Exogenous Hosts. ACS Synth Biol 2024; 13:1165-1176. [PMID: 38587290 PMCID: PMC11838836 DOI: 10.1021/acssynbio.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Genetic parts and hosts can be sourced from nature to realize new functions for synthetic biology or to improve performance in a particular application environment. Here, we proceed from the discovery and characterization of new parts to stable expression in new hosts with a particular focus on achieving sustained chitinase activity. Chitinase is a key enzyme for various industrial applications that require the breakdown of chitin, the second most abundant biopolymer on the earth. Diverse microbes exhibit chitinase activity, but for applications, the environmental conditions for optimal enzyme activity and microbe fitness must align with the application context. Achieving sustained chitinase activity under broad conditions in heterologous hosts has also proven difficult due to toxic side effects. Toward addressing these challenges, we first screen ocean water samples to identify microbes with chitinase activity. Next, we perform whole genome sequencing and analysis and select a chitinase gene for heterologous expression. Then, we optimize transformation methods for target hosts and introduce chitinase. Finally, to achieve robust function, we optimize ribosome binding sites and discover a beneficial promoter that upregulates chitinase expression in the presence of colloidal chitin in a sense-and-respond fashion. We demonstrate chitinase activity for >21 days in standard (Escherichia coli) and nonstandard (Roseobacter denitrificans) hosts. Besides enhancing chitinase applications, our pipeline is extendable to other functions, identifies natural microbes that can be used directly in non-GMO contexts, generates new parts for synthetic biology, and achieves weeks of stable activity in heterologous hosts.
Collapse
Affiliation(s)
- Diptee Chaulagain
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Narges S Shamabadi
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Skylar A Leslie
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - David K Karig
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
4
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
5
|
Wang Z, Li X, Dai Y, Yin L, Azi F, Zhou J, Dong M, Xia X. Sustainable production of genistin from glycerol by constructing and optimizing Escherichia coli. Metab Eng 2022; 74:206-219. [DOI: 10.1016/j.ymben.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
6
|
Nilpa P, Chintan K, Sayyed RZ, El Enshasy H, El Adawi H, Alhazmi A, Almalki AH, Haque S. Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein. PLoS One 2022; 17:e0265969. [PMID: 35363796 PMCID: PMC8975109 DOI: 10.1371/journal.pone.0265969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The tissue of insects, pests, and fungi has a chitin layer followed by protein in the cell membrane. The complete biodegradation of chitin and protein-present in the waste requires the action of two enzymes, namely chitinase, and protease. Combining chitinase and protease in a single protein/enzyme will serve as a bifunctional enzyme that can efficiently degrade the chitin and protein-rich biomass. The present study was aimed to fuse these two enzymes to produce a single protein and study the kinetics of the recombinant fusion protein. A chitinase and alkaline protease genes were isolated, cloned, and expressed successfully as a fusion product in heterologous host Escherichia coli. The two native genes were successfully fused in E.coli by using flexible glycine–serine (G4S)2 linker (GGGGS, GS linker). The recombinant fusion protein in E.coli showed hydrolyzed chitin and protein on chitin and bovine serum albumin agar plates confirming the successful cloning and expression of chitinase and protease enzymes in a single fusion protein. The common pUC18-T7 mini vector with the ompA signal sequence helps the extracellular expression of fusion protein efficiently. The native gel electrophoresis revealed a molecular mass of purified protein as 92.0 kDa. The fusion protein’s maximal chitinase and protease activity occurred at pH 5.0 and 8.0 and 30 0C, respectively resembling the individual enzymes’. In the kinetic studies of the fusion protein, it was observed that the presence of metal ions such as Cu2+, Na2+, and Ca2+; significantly enhanced the enzyme activities while organic solvents oxidants and chemicals have drastically affected the activities of both the enzymes in the fusion protein. No such fusion protein has been produced in a heterologous host yet. The reports on fusion protein with biomass-degrading capacity are also scarce. This is probably the first report of a bifunctional chitinase/protease expressed in E. coli.
Collapse
Affiliation(s)
- Patel Nilpa
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Kapadia Chintan
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India
- * E-mail: (KC); (RZS)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, Maharashtra, India
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States of America
- * E-mail: (KC); (RZS)
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Hala El Adawi
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer,Bursa, Turkey
| |
Collapse
|
7
|
Akram F, Jabbar Z, Aqeel A, Haq IU, Tariq S, Malik K. A Contemporary Appraisal on Impending Industrial and Agricultural Applications of Thermophilic-Recombinant Chitinolytic Enzymes from Microbial Sources. Mol Biotechnol 2022; 64:1055-1075. [PMID: 35397055 DOI: 10.1007/s12033-022-00486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
The ability of chitinases to degrade the second most abundant polymer, chitin, into potentially useful chitooligomers and chitin derivatives has not only rendered them fit for chitinous waste management but has also made them important from industrial point of view. At the same time, they have also been recognized to have an imperative role as promising biocontrol agents for controlling plant diseases. As thermostability is an important property for an industrially important enzyme, various bacterial and fungal sources are being exploited to obtain such stable enzymes. These stable enzymes can also play a role in agriculture by maintaining their stability under adverse environmental conditions for longer time duration when used as biocontrol agent. Biotechnology has also played its role in the development of recombinant chitinases with enhanced activity, thermostability, fungicidal and insecticidal activity via recombinant DNA techniques. Furthermore, a relatively new approach of generating pathogen-resistant transgenic plants has opened new ways for sustainable agriculture by minimizing the yield loss of valuable crops and plants. This review focuses on the potential applications of thermostable and recombinant microbial chitinases in industry and agriculture.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Shahbaz Tariq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Liu H, Cheng M, Zhao S, Lin C, Song J, Yang Q. ATP-Binding Cassette Transporter Regulates N,N'-diacetylchitobiose Transportation and Chitinase Production in Trichoderma asperellum T4. Int J Mol Sci 2019; 20:ijms20102412. [PMID: 31096671 PMCID: PMC6566805 DOI: 10.3390/ijms20102412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are a superfamily of proteins that transport nutrient substances and secondary metabolites through cell membranes. They also act as an uptake system for N,N′-diacetylchitobiose (GlcNAc)2 in Streptomyces coelicolor. (GlcNAc)2 is an important inducer of chitinase. However, whether the ABC transporter in Trichoderma spp. is also responsible for (GlcNAc)2 uptake and chitinase induction has not yet been confirmed. In this study, we applied RNA interference and overexpression technologies to alter the expression level of the ABC-B transporter in order to detect changes in its transportation ability and the expression level of inducible endo-chitinase ECH42—an important biocontrol enzyme in Trichoderma asperellum. The results revealed that, after interference with the expression of the ABC-B transporter, T. asperellum T4 was only able to grow normally when glucose was the only carbon source. Compared with the wild-type, the efficiency of (GlcNAc)2 by the overexpression strain evidently increased, along with the activity level of ECH42. In conclusion, one of the functions of the ABC-B transporter in T.asperellum is the uptake and transport of (GlcNAc)2 into cells, and chitobiose is a strong inducer of ECH42 in T. asperellum T4.
Collapse
Affiliation(s)
- He Liu
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Ming Cheng
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Shanshan Zhao
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Congyu Lin
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Jinzhu Song
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Qian Yang
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| |
Collapse
|
9
|
Zhang R, Xu S, Li X, Han X, Song Z, Zhou J, Huang Z. Examining the molecular characteristics of glycoside hydrolase family 20 β-N-acetylglucosaminidases with high activity. Bioengineered 2019; 10:71-77. [PMID: 30982422 PMCID: PMC6527067 DOI: 10.1080/21655979.2019.1602427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) possess many important biological functions and are used for promising applications that are often hampered by low-activity enzymes. We previously demonstrated that most GlcNAcases of the glycoside hydrolase (GH) family 20 showed higher activities than those of other GH families, and we presented two novel GH 20 GlcNAcases that showed higher activities than most GlcNAcases. A highly flexible structure, which was attributed to the presence of to a high proportion of random coils and flexible amino acid residues, was presumed to be a factor in the high activity of GH 20 GlcNAcases. In this study, we further hypothesized that two special positions might play a key role in catalytic activity. The increase in GH 20 GlcNAcase activity might correspond to the increased structural flexibility and substrate affinity of the two positions due to an increase in random coils and amino acid residues, notably acidic Asp and Glu.
Collapse
Affiliation(s)
- Rui Zhang
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| | - Shujing Xu
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Xinyue Li
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Xiaowei Han
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Zhifeng Song
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Junpei Zhou
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| | - Zunxi Huang
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| |
Collapse
|