1
|
Shi Z, Hu C, Zheng X, Sun C, Li Q. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells. Exp Hematol Oncol 2024; 13:55. [PMID: 38778409 PMCID: PMC11110349 DOI: 10.1186/s40164-024-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is one of the mainstream approaches for cancer treatment, although the clinical outcomes are limited due to the radioresistance of tumor cells. Hypoxia and metabolic reprogramming are the hallmarks of tumor initiation and progression and are closely linked to radioresistance. Inside a tumor, the rate of angiogenesis lags behind cell proliferation, and the underdevelopment and abnormal functions of blood vessels in some loci result in oxygen deficiency in cancer cells, i.e., hypoxia. This prevents radiation from effectively eliminating the hypoxic cancer cells. Cancer cells switch to glycolysis as the main source of energy, a phenomenon known as the Warburg effect, to sustain their rapid proliferation rates. Therefore, pathways involved in metabolic reprogramming and hypoxia-induced radioresistance are promising intervention targets for cancer treatment. In this review, we discussed the mechanisms and pathways underlying radioresistance due to hypoxia and metabolic reprogramming in detail, including DNA repair, role of cancer stem cells, oxidative stress relief, autophagy regulation, angiogenesis and immune escape. In addition, we proposed the existence of a feedback loop between energy metabolic reprogramming and hypoxia, which is associated with the development and exacerbation of radioresistance in tumors. Simultaneous blockade of this feedback loop and other tumor-specific targets can be an effective approach to overcome radioresistance of cancer cells. This comprehensive overview provides new insights into the mechanisms underlying tumor radiosensitivity and progression.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
He M, Wang L, Yue Z, Feng C, Dai G, Jiang J, Huang H, Ji Q, Zhou M, Li D, Chai W. Development and validation of glycosyltransferase related-gene for the diagnosis and prognosis of head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:1750-1766. [PMID: 38244579 PMCID: PMC10866440 DOI: 10.18632/aging.205455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous cancer characterized by difficulties in early diagnosis and outcome prediction. Aberrant glycosylated structures produced by the aberrant expression of glycosyltransferases are prevalent in HNSCC. In this study, we aim to construct glycosyltransferase-related gene signatures with diagnostic and prognostic value to better stratify patients with HNSCC and improve their diagnosis and prognosis. METHODS Bioinformatic tools were used to process data of patients with HNSCC from The Cancer Genome Atlas (TCGA) database. The prognostic model was formatted using univariate and multivariate Cox regression methods, while the diagnostic signature was constructed using support vector machine (SVM) and LASSO analysis. The results were verified using the Gene Expression Omnibus (GEO) cohort. The tumor microenvironment and benefits of immune checkpoint inhibitor (ICI) therapy in subgroups defined by glycosyltransferase-related genes were analyzed. Molecular biology experiments, including western blotting, cell counting kit (CCK)-8, colony formation, wound healing, and Transwell assays, were conducted to confirm the oncogenic function of beta-1,4-galactosyltransferase 3 (B4GALT3) in HNSCC. RESULTS We established a five-gene prognostic signature and a 15-gene diagnostic model. Based on the median risk score, patients with low risk had longer overall survival than those in the high-risk group, which was consistent with the results of the GEO cohort. The concrete results suggested that high-risk samples were related to a high tumor protein (TP)53 mutation rate, high infiltration of resting memory cluster of differentiation (CD)4 T cells, resting natural killer (NK) cells, and M0 macrophages, and benefited from ICI therapy. In contrast, the low-risk subgroup was associated with a low TP53 mutation rate; and high infiltration of naive B cells, plasma cells, CD8 T cells, and resting mast cells; and benefited less from ICI therapy. In addition, the diagnostic model had an area under curve (AUC) value of 0.997 and 0.978 in the training dataset and validation cohort, respectively, indicating the high diagnostic potential of the model. Ultimately, the depletion of B4GALT3 significantly hindered the proliferation, migration, and invasion of HNSCC cells. CONCLUSIONS We established two new biomarkers that could provide clinicians with diagnostic, prognostic, and treatment guidance for patients with HNSCC.
Collapse
Affiliation(s)
- Miao He
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Li Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Zihan Yue
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Chunbo Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Guosheng Dai
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Jinsong Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Hui Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Qingjun Ji
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Minglang Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Wei Chai
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| |
Collapse
|
3
|
You P, Liu S, Li Q, Xie D, Yao L, Guo C, Guo Z, Wang T, Qiu H, Guo Y, Li J, Zhou H. Radiation-sensitive genetic prognostic model identifies individuals at risk for radiation resistance in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:15623-15640. [PMID: 37656244 DOI: 10.1007/s00432-023-05304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The advantages of radiotherapy for head and neck squamous cell carcinoma (HNSCC) depend on the radiation sensitivity of the patient. Here, we established and verified radiological factor-related gene signature and built a prognostic risk model to predict whether radiotherapy would be beneficial. METHODS Data from The Cancer Genome Atlas, Gene Expression Omnibus, and RadAtlas databases were subjected to LASSO regression, univariate COX regression, and multivariate COX regression analyses to integrate genomic and clinical information from patients with HNSCC. HNSCC radiation-related prognostic genes were identified, and patients classified into high- and low-risk groups, based on risk scores. Variations in radiation sensitivity according to immunological microenvironment, functional pathways, and immunotherapy response were investigated. Finally, the expression of HNSCC radiation-related genes was verified by qRT-PCR. RESULTS We built a clinical risk prediction model comprising a 15-gene signature and used it to divide patients into two groups based on their susceptibility to radiation: radiation-sensitive and radiation-resistant. Overall survival was significantly greater in the radiation-sensitive than the radiation-resistant group. Further, our model was an independent predictor of radiotherapy response, outperforming other clinical parameters, and could be combined with tumor mutational burden, to identify the target population with good predictive value for prognosis at 1, 2, and 3 years. Additionally, the radiation-resistant group was more vulnerable to low levels of immune infiltration, which are significantly associated with DNA damage repair, hypoxia, and cell cycle regulation. Tumor Immune Dysfunction and Exclusion scores also suggested that the resistant group would respond less favorably to immunotherapy. CONCLUSIONS Our prognostic model based on a radiation-related gene signature has potential for application as a tool for risk stratification of radiation therapy for patients with HNSCC, helping to identify candidates for radiation therapy and overcome radiation resistance.
Collapse
Affiliation(s)
- Peimeng You
- Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Shengbo Liu
- Second Clinical College of Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chenguang Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zefeng Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yangzhong Guo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Junyu Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China.
| | - Haiyu Zhou
- Nanchang University, Nanchang, China.
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Jiangxi Lung Cancer Institute, Nanchang, China.
| |
Collapse
|
4
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
5
|
Han Y, Chen G, Liu S, Zhou G, Xu X, Zhang H, Li Z, Wu C, Liu Y, Fang K, Chen G. MUC13 promotes the development of esophageal cancer by upregulating the expression of O-glycan process-related molecules. Discov Oncol 2023; 14:123. [PMID: 37395858 PMCID: PMC10317945 DOI: 10.1007/s12672-023-00713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by poor prognosis, aggressiveness, and poor survival. Mucin 13 (MUC13) is a member of the membrane-bound mucin and located on chromosome 3q21.2 and consists of α and β subunits. It has been found that MUC13 is overexpressed in a variety of tumor cells and acts a vital role in the invasiveness and malignant progression of several types of tumors. However, the role and regulatory mechanism of MUC13 in the progression of esophageal cancer remain unclear. METHODS The expression level of MUC13 was detected in 15 esophageal cancer tissues and 15 pairs of adjacent nontumor tissues by immunohistochemistry (IHC). In addition, the expression of MUC13 mRNA level in human esophageal cancer cell lines (EC9706 and ECA109 and TE-1) was measured by qRT-PCR. In vitro, after silencing MUC13 with lentiviral interference technology, CCK8 assay, clone formation assay, and flow cytometry were applied to investigate the proliferation activity, clone formation ability and anti-apoptosis ability of EC9706 and ECA109 cells. The tumor xenograft growth assay was used to confirm the influence of MUC13 knockdown on the growth of esophageal tumors in vivo. The qRT-PCR assay and western blot experiments were taken to study the mechanism of MUC13 regulating the proproliferation and antiapoptotic of esophageal cancer. RESULTS The results showed that MUC13 was overexpressed in esophageal cancer tissues and cell lines (EC9706 and ECA109 and TE-1), especially in EC9706 and ECA109 cells, but low expressed in human esophageal epithelial cell line (HEEC). Next, silencing MUC13 inhibits proliferation, blocks cell cycle progression, and promotes cell apoptosis in vitro, and restrains the growth of esophageal cancer tissues in vivo. Finally, MUC13 affects the proproliferation and antiapoptotic by regulating the expression of GLANT14, MUC3A, MUC1, MUC12, and MUC4 that closely related to O-glycan process. CONCLUSIONS This study proved that MUC13 is an important molecule that regulates the O-glycan process and then affects the progress of esophageal cancer. MUC13 may be a novel therapeutic target for patients with esophageal cancer.
Collapse
Affiliation(s)
- Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221002, China
| | - Gang Chen
- Department of Plastic Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Shiyu Liu
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221002, China
| | | | - Xinxin Xu
- Xuzhou Medical University, Xuzhou, 221002, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhentao Li
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221002, China
| | - Chuannan Wu
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221002, China
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Kai Fang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
6
|
Wang HQ, Fu R, Man QW, Yang G, Liu B, Bu LL. Advances in CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinoma. J Clin Med 2023; 12:jcm12062173. [PMID: 36983174 PMCID: PMC10052000 DOI: 10.3390/jcm12062173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Surgery with the assistance of conventional radiotherapy, chemotherapy and immunotherapy is the basis for head and neck squamous cell carcinoma (HNSCC) treatment. However, with these treatment modalities, the recurrence and metastasis of tumors remain at a high level. Increasingly, the evidence indicates an excellent anti-tumor effect of chimeric antigen receptor T (CAR-T) cells in hematological malignancy treatment, and this novel immunotherapy has attracted researchers’ attention in HNSCC treatment. Although several clinical trials have been conducted, the weak anti-tumor effect and the side effects of CAR-T cell therapy against HNSCC are barriers to clinical translation. The limited choices of targeting proteins, the barriers of CAR-T cell infiltration into targeted tumors and short survival time in vivo should be solved. In this review, we introduce barriers of CAR-T cell therapy in HNSCC. The limitations and current promising strategies to overcome barriers in solid tumors, as well as the applications for HNSCC treatment, are covered. The perspectives of CAR-T cell therapy in future HNSCC treatment are also discussed.
Collapse
Affiliation(s)
- Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Ruxing Fu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 92093, USA
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (L.-L.B.)
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (L.-L.B.)
| |
Collapse
|
7
|
Weng T, Wang L, Zhang X, Wu Y, Zhao Y, Zhang Y, Han J, Liu M. A pH-sensitive DNA tetrahedron for targeted release of anthracyclines: Binding properties investigation and cytotoxicity evaluation. Int J Biol Macromol 2022; 223:766-778. [PMID: 36372106 DOI: 10.1016/j.ijbiomac.2022.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
The anticancer efficacy of chemotherapeutic agents can be enhanced by the loading of DNA nanostructures, which is closely related to their interactions. This study achieved pH-responsive and targeted anthracycline delivery using i-motif and MUC1 aptamer co-modified DNA tetrahedron (MUC1-TD). The thermodynamic parameters for the binding of doxorubicin (DOX) and epirubicin (EPI) to MUC1-TD at pHs 7.4 and 5.0 were obtained. The smaller binding constant and the number of binding sites at pH 5.0 than at pH 7.4 indicated that acidic conditions favored the release of DOX and EPI loaded by MUC1-TD. The binding affinity of DOX was stronger than that of EPI at the same pH value due to their different chemical stereostructures. The intercalative binding mechanism was verified. In vitro release experiments revealed that acid pH and deoxyribonuclease I accelerated the release of DOX and EPI. The faster release rate of EPI than DOX was related to their binding affinity. In vitro cytotoxicity and cell uptake experiments revealed that the cytotoxicity of DOX and EPI loaded by MUC1-TD to MCF-7 cells was significantly higher than that to L02 cells. This work will provide theoretical guidance for the application of pH-responsive MUC1-TD nanocarriers in the field of pharmaceutics.
Collapse
Affiliation(s)
- Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yongfang Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; Liaocheng Hi-tech Biotechnology Co., Ltd., Liaocheng 252059, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
8
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Wu LZ, Huang ML, Qi CL, Shen LJ, Zou Y, Yang R, Sheng JF, Chen SM. Overexpression of Notch2 enhances radiosensitivity via inhibition of the AKT/mTOR signaling pathway in nasopharyngeal carcinoma. Bioengineered 2021; 12:3398-3409. [PMID: 34224316 PMCID: PMC8806669 DOI: 10.1080/21655979.2021.1949236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our previous study found that in nasopharyngeal carcinoma (NPC) cells, overexpression of Notch2 can inhibit epithelial-mesenchymal transition (EMT), which plays a vital role in mediating radiosensitivity. The purpose of this study was to explore the radiosensitizing efficacy of the Notch2 gene in NPC cells and its potential mechanism. We used the recombinant plasmid transfection technique to establish Notch2-overexpressing 5–8 F and CNE-2 NPC cells. Cell proliferation, radiosensitivity, apoptosis and cell cycle distribution were assessed by cell counting kit-8 (CCK-8) experiments, colony formation experiments and flow cytometry. The levels of proteins related to cell cycle, apoptosis, and the AKT/mTOR signaling pathway were evaluated by using Western blotting. The results suggested that Notch2 overexpression increased the radiosensitivity of NPC cells, with sensitizing enhancement ratios (SERs) of 1.24 (5–8 F cells) and 1.34 (CNE-2 cells). Flow cytometry indicated that the level of apoptosis and percentage of cells in G2/M-phase were highest in NPC cells overexpressing Notch2 and treated with radiotherapy compared to cells overexpressing Notch2 alone or administered radiotherapy alone. Western blotting showed that compared to that of cells treated with Notch2 overexpression or radiotherapy alone, the levels of γH2AX, Bax, Bcl-2, Cyclin D1 and AKT/mTOR signaling pathway-related proteins were modified in NPC cells overexpressing Notch2 and treated with radiotherapy. These findings showed that overexpression of Notch2 can increase the radiosensitivity of NPC cells by inhibiting the AKT/mTOR pathway.
Abbreviations
NPC: Nasopharyngeal carcinoma; EMT: Epithelial-mesenchymal transition; CCK8: Cell counting kit-8; EBV: Epstein-Barr virus; FBS: Fetal bovine serum; PE: Plating efficiency; SF: Survival fraction; SER: Sensitizing enhancement ratio; DSBs: DNA double-strand breaks![]() ![]()
Collapse
Affiliation(s)
- Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Mao-Ling Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Cheng-Lin Qi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Li-Jun Shen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Jian-Fei Sheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|