1
|
Patel D, Thankachan S, Sreeram S, Kavitha KP, Kabekkodu SP, Suresh PS. LncRNA-miRNA-mRNA regulatory axes as potential biomarkers in cervical cancer: a comprehensive overview. Mol Biol Rep 2025; 52:110. [PMID: 39775991 DOI: 10.1007/s11033-024-10215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Despite the recent advances in vaccination and treatment strategies, cervical cancer continues to claim numerous lives every year. Owing to the fact that non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) interact with coding transcripts, and effectuate key roles in the tumorigenesis and metastasis of cervical cancer, there has been extensive research in recent years to explore their potential as biomarkers for early detection, or as therapeutic targets. Through this review, we aim to provide a comprehensive overview of the recent advancements in discoveries about cervical cancer-associated lncRNA-miRNA-mRNA axes, their dysregulation, and their roles in various signaling pathways associated with the growth, survival, invasion, and metastasis of cervical cancer cells. We further discuss the potential therapeutic strategies to utilize the dysregulated lncRNAs as diagnostic and prognostic biomarkers, and as therapeutic targets to ameliorate the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Dimple Patel
- National Resource Centre for Value Education in Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sanu Thankachan
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, 673601, India
| | - Saraswathy Sreeram
- Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K P Kavitha
- Department of Pathology, Aster Malabar Institute of Medical Sciences (MIMS), Calicut, Kerala, 673016, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, 673601, India.
| |
Collapse
|
2
|
Liao L, Huang P, Zhao J, Wang Z, Chen H, Zhang C, Huang L. lncRNA799/TBL1XR1/ZEB1 Axis Forms a Feedback Loop to Promote the Epithelial-Mesenchymal Transition of Cervical Cancer Cells. Crit Rev Eukaryot Gene Expr 2024; 34:33-43. [PMID: 38073440 DOI: 10.1615/critreveukaryotgeneexpr.2023049916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cervical cancer is a common malignancy among women worldwide. Long non-coding RNAs (lncRNAs) are frequently involved in the pathogenesis of cervical cancer. Therefore, the present study aimed to investigate the potentials of lncRNA799 in cervical cancer. mRNA and protein expression were detected by reverse transcription-quantitative polymerase chain reaction and Western blot analysis, respectively. Cellular functions were assessed using CCK-8, wound healing and transwell analysis. The binding potential of zinc finger E-box-binding homeobox 1 (ZEB1) on the promoter of lncRNA799 was predicted utilizing the JASPAR database, and was then verified by luciferase and chromatin immunoprecipitation (ChIP) assays. Furthermore, the gene interactions were assessed using RNA immunoprecipitation and co-immunoprecipitation assays. The results demonstrated that lncRNA799 was upregulated in cervical cancer cells. However, lncRNA799 deficiency suppressed the proliferation and epithelial-mesenchymal transition of cervical cancer cells. Furthermore, lncRNA799 could interact with eukaryotic translation initiation factor 4A3 to maintain the mRNA stability of transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) and promote the interaction between ZEB1 and TBL1XR1. Additionally, the results showed that ZEB1 could transcriptionally activate lncRNA799. Taken together, the present study suggested that the lncRNA799/TBL1XR1/ZEB1 axis could form a positive feedback loop in cervical cancer and could be, therefore, considered as a potential therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Lingmin Liao
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China
| | - Peng Huang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China; Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiali Zhao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China; Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ziying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - He Chen
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China; The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Long Huang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China; Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Poleboyina PK, Alagumuthu M, Pasha A, Ravinder D, Pasumarthi D, Pawar SC. Entrectinib a Plausible Inhibitor for Osteopontin (SPP1) in Cervical Cancer-Integrated Bioinformatic Approach. Appl Biochem Biotechnol 2023; 195:7766-7795. [PMID: 37086377 DOI: 10.1007/s12010-023-04541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Cervical cancer is one of the major causes of death in women, especially in developing countries bearing more than a quarter of the global burden. Secreted phosphoprotein-1, also known as OPN (osteopontin), is an integrin-binding glycophosphoprotein that is overexpressed in a variety of tumors. OPN is a chemokine-like calcified ECM-associated protein that plays a crucial role in evaluating the metastatic potential of various cancers. However, the role of SPP1 in the tumor microenvironment and associated signaling pathways in CC is still unclear. In our study, three CC microarray datasets (GSE9750, GSE46857, and GSE67522) were obtained from the GEO database to identify the differentially expressed genes. Enrichment analysis was carried out by Enrichr and ShinyGO and the PPI interaction network was created by using String and Cytoscape. GEPIA datasets were used to validate the top 10 hub genes, and virtual screening, docking, and dynamic simulation studies were used to identify a suitable inhibitor against the OPN protein using MVD, PyRx, and GROMACS respectively. Our results show that a total of 11 DEGs were common for three datasets and gene ontology pathway enrichment analysis revealed that 2 biological processes i.e. programmed cell death and animal organ development commonly affected mechanisms in all three datasets. Docking and dynamic studies revealed that Entrectinib showed excellent binding affinity against OPN protein. Based on the results, we conclude that OPN is one of the most upregulated genes in cervical cancer and Entrectinib emerges to be a promising potential OPN inhibitor to curtail cervical cancer progression. Schematic representation: The schematic representation of methodology steps is illustrated in the graphical abstract. Schematic representation of methodology.
Collapse
Affiliation(s)
- Pavan Kumar Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, -500007, Hyderabad, Telangana, India
| | - Manikandan Alagumuthu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, -632014, Vellore, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, -500007, Hyderabad, Telangana, India
| | - Doneti Ravinder
- Department of Genetics & Biotechnology, University College of Science, Osmania University, -500007, Hyderabad, Telangana, India
| | - Deepthi Pasumarthi
- Department of Genetics & Biotechnology, University College of Science, Osmania University, -500007, Hyderabad, Telangana, India
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, -500007, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Hu Z, Chen Z, Jiang W, Fang D, Peng P, Yao S, Luo M, Wang L, Sun Z, Wang W, Wang X, Mao H, Ai F, Zhou P. Long Noncoding RNA ACTA2-AS1 Inhibits Cell Growth and Facilitates Apoptosis in Gastric Cancer by Binding with miR-6720-5p to Regulate ESRRB. Biochem Genet 2023; 61:2672-2690. [PMID: 37222961 DOI: 10.1007/s10528-023-10399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/07/2023] [Indexed: 05/25/2023]
Abstract
Gastric cancer (GC) is a common malignant tumor, posing a great threat to human's health and life. Previous studies have suggested aberrant expression of long non-coding RNAs (lncRNAs) in GC. This study elucidated the effects of lncRNA ACTA2-AS1 on the biological characteristics of GC. Gene expression in stomach adenocarcinoma (STAD) samples compared with normal tissues and the correlation between gene expression and prognosis of STAD patients were analyzed using bioinformatic tools. Gene expression at protein and mRNA levels in GC and normal cells was tested by western blotting and RT-qPCR. The subcellular localization of ACTA2-AS1 in AGS and HGC27 cells was identified by nuclear-cytoplasmic fractionation and FISH assay. EdU, CCK-8, flow cytometry analysis, TUNEL staining assays were conducted to evaluate the role of ACTA2-AS1 and ESRRB on GC cellular behaviors. The binding relationship among ACTA2-AS1, miR-6720-5p and ESRRB was verified by RNA pulldown, luciferase reporter assay and RIP assay. LncRNA ACTA2-AS1 was underexpressed in GC tissues and cell lines. ACTA2-AS1 elevation suppressed GC cell proliferation and induced apoptosis. Mechanistically, ACTA2-AS1 directly bound to miR-6720-5p and subsequently promoted the expression of target gene ESRRB in GC cells. Furthermore, ESRRB knockdown reversed the influence of ACTA2-AS1 overexpression on GC proliferation and apoptosis. ACTA2-AS1 plays an antioncogenic role in GC via binding with miR-6720-5p to regulate ESRRB expression.
Collapse
Affiliation(s)
- Zuchao Hu
- The Second Ward of Surgery, Sinophram Hanjiang Hospital, Shiyan, Hubei, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, Hubei, China
| | - Wei Jiang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, Hubei, China
| | - Dazheng Fang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Peng
- The Second Ward of Internal Medicine, Sinophram Hanjiang Hospital, Shiyan, Hubei, China
| | - Shouguo Yao
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ming Luo
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Wang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhengfu Sun
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Wang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Wang
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haibo Mao
- Department of Thyroid and Breast, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan, Hubei, China.
| | - Peihua Zhou
- Department of Gastrointestinal Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, No. 16, Daling Road, Zhangwan District, Shiyan, Hubei, China.
| |
Collapse
|
5
|
Wang L, Su X, Wang L, Luo J, Xiong Z, Leung GHD, Zhou J, Yang G, Zhai L, Zhang X, Liu Q, Lu G, Wang Y. Identification of lncRNAs associated with uterine corpus endometrial cancer prognosis based on the competing endogenous RNA network. Int J Med Sci 2023; 20:1600-1615. [PMID: 37859697 PMCID: PMC10583181 DOI: 10.7150/ijms.87430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Uterine Corpus Endometrial Carcinoma (UCEC) is one of the major malignant tumors of the female reproductive system. However, there are limitations in the currently available diagnostic approaches for UCEC. Long non-coding RNAs (lncRNAs) play important roles in regulating biological processes as competitive endogenous RNA (ceRNA) in tumors. To study the potential of lncRNAs as non-invasive diagnostic tumor markers, RNA-sequencing dataset of UCEC patients from The Cancer Genome Atlas was used to identify differentially expressed genes. A lncRNA-miRNA-mRNA ceRNA network was constructed by differentially expressed lncRNAs, miRNAs and miRNAs. Pathway enrichment and functional analysis for the mRNAs in the constructed ceRNA network provide the direction of future research for UCEC by demonstrating the most affected processes and pathways. Seven potential lncRNA biomarkers (C20orf56, LOC100144604, LOC100190940, LOC151534, LOC727677, FLJ35390, LOC158572) were validated in UCEC patients by quantitative real-time PCR. Notably, LOC100190940 and LOC158572 were identified as novel RNA molecules with unknown functions. Receiver operating characteristic (ROC) curve analysis demonstrated that the combined 7 lncRNAs had a high diagnostic value for UCEC patients with area under curve (AUC) of 0.941 (95% CI: 0.875-0.947). Our study highlights the potential of the validated 7 lncRNAs panel as diagnostic biomarkers in UCEC, providing new insights into the UCEC pathogenesis.
Collapse
Affiliation(s)
- Liangxiao Wang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Xianwei Su
- Research and Development Unit, Shenzhen GenDo Medical Technology Co., Ltd., Dapeng, Shenzhen, 518000, China
| | - Liangyu Wang
- Qujing Medical College, Qujing, 655000, Yunnan, China
| | - Jianbo Luo
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Zhiqiang Xiong
- SDIVF R&D Centre, 209,12W, HKSTP, Shatin, Hong Kong, China
| | | | - Jingye Zhou
- Research and Development Unit, Shenzhen GenDo Medical Technology Co., Ltd., Dapeng, Shenzhen, 518000, China
| | - Guang Yang
- Department of Sports Medicine, Qujing First People's Hospital, 650500, Yunnan, China
| | - Li Zhai
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Xi Zhang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Qiang Liu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Wang
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
6
|
Daneshpour M, Ghadimi-Daresajini A. Overview of miR-106a Regulatory Roles: from Cancer to Aging. Bioengineering (Basel) 2023; 10:892. [PMID: 37627777 PMCID: PMC10451182 DOI: 10.3390/bioengineering10080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) comprise a class of non-coding RNA with extensive regulatory functions within cells. MiR-106a is recognized for its super-regulatory roles in vital processes. Hence, the analysis of its expression in association with diseases has attracted considerable attention for molecular diagnosis and drug development. Numerous studies have investigated miR-106 target genes and shown that this miRNA regulates the expression of some critical cell cycle and apoptosis factors, suggesting miR-106a as an ideal diagnostic and prognostic biomarker with therapeutic potential. Furthermore, the reported correlation between miR-106a expression level and cancer drug resistance has demonstrated the complexity of its functions within different tissues. In this study, we have conducted a comprehensive review on the expression levels of miR-106a in various cancers and other diseases, emphasizing its target genes. The promising findings surrounding miR-106a suggest its potential as a valuable biomolecule. However, further validation assessments and overcoming existing limitations are crucial steps before its clinical implementation can be realized.
Collapse
Affiliation(s)
- Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Ali Ghadimi-Daresajini
- Department of Medical Biotechnology, School of Allied Medicine, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| |
Collapse
|
7
|
Liu YQ, Liu C, Bai Y, Gao J. LncRNA AATBC indicates development and facilitates cell growth and metastasis of cervical cancer as a sponge of miR-1245b-5p. Kaohsiung J Med Sci 2023; 39:115-123. [PMID: 36420764 DOI: 10.1002/kjm2.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
With the increasing incidence and mortality rate, cervical cancer has been considered one of the most frequent malignant tumors in females. Exploration of tumor progression-related biomarkers could facilitate the identification of novel and targeted therapy strategies. To assess the significance of lncRNA AATBC (AATBC) and its potential regulatory mechanism in cervical cancer, and to identify a potential biomarker, this study enrolled 123 patients with cervical cancer. Paired tissue samples were collected. The expression levels of AATBC and miR-1245b-5p were analyzed by RT-qPCR and their significance in the development and prognosis of cervical cancer was evaluated using chi-square and Cox analyses. In vitro, the regulatory effect of AATBC on the cellular processes of cervical cancer was estimated by CCK8 and Transwell assay. The interaction between ATTBC and miR-1245b-5p was assessed by luciferase reporter assay. Significant upregulation of AATBC and reduced miR-1245b-5p level in cervical cancer were observed, which showed a negative correlation between their expression levels. Close relationships of AATBC and miR-1245b-5p with the FIGO stage and lymph node metastasis were revealed. AATBC showed a significant prognostic value and miR-1245b-5p was found to mediate the tumor inhibitory effect of AATBC knockdown, which is speculated to be the underlying molecular mechanism of AATBC in cervical cancer development. Upregulation of AATBC indicted the malignant development and adverse prognosis of cervical cancer. AATBC served as a tumor promoter of cervical cancer by modulating miR-1245b-5p.
Collapse
Affiliation(s)
- Ying-Qiao Liu
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yang Bai
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Yu Y, Zhang YH, Liu L, Yu LL, Li JP, Rao JA, Hu F, Zhu LJ, Bao HH, Cheng XS. Bioinformatics analysis of candidate genes and potential therapeutic drugs targeting adipose tissue in obesity. Adipocyte 2022; 11:1-10. [PMID: 34964707 PMCID: PMC8726706 DOI: 10.1080/21623945.2021.2013406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Obesity is a complex medical condition that affects multiple organs in the body. However, the underlying mechanisms of obesity, as well as its treatment, are largely unexplored. The focus of this research was to use bioinformatics to discover possible treatment targets for obesity. To begin, the GSE133099 database was used to identify 364 differentially expressed genes (DEGs). Then, DEGs were subjected to tissue-specific analyses and enrichment analyses, followed by the creation of a protein-protein interaction (PPI) network and generation of a drug-gene interaction database to screen key genes and potential future drugs targeting obesity. Findings have illustrated that the tissue-specific expression of neurologic markers varied significantly (34.7%, 52/150). Among these genes, Lep, ApoE, Fyn, and FN1 were the key genes observed in the adipocyte samples from obese patients relative to the controls. Furthermore, nine potential therapeutic drugs (dasatinib, ocriplasmin, risperidone, gemfibrozil, ritonavir, fluvastatin, pravastatin, warfarin, atorvastatin) that target the key genes were also screened and selected. To conclude the key genes discovered (Lep, ApoE, Fyn, and FN1), as well as 9 candidate drugs, could be used as therapeutic targets in treating obesity.
Collapse
Affiliation(s)
- Yun Yu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Han Zhang
- Reproductive Medical Center, Maternal and Child Health Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Liu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Ling Yu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Pei Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing-an Rao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Hu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Juan Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Hui Bao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Jasrotia R, Dhanjal DS, Bhardwaj S, Sharma P, Chopra C, Singh R, Kumar A, Mubayi A, Kumar D, Kumar R, Goyal A. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Xia C, Li Q, Cheng X, Wu T, Gao P, Gu Y. Insulin-like growth factor 2 mRNA-binding protein 2-stabilized long non-coding RNA Taurine up-regulated gene 1 (TUG1) promotes cisplatin-resistance of colorectal cancer via modulating autophagy. Bioengineered 2022; 13:2450-2469. [PMID: 35014946 PMCID: PMC8973703 DOI: 10.1080/21655979.2021.2012918] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to influence the chemoresistance of colorectal cancer (CRC). Therefore, the study is designed to investigate the regulatory function and mechanism of Taurine up-regulated gene 1 (TUG1) in the cisplatin resistance of CRC. qRT-PCR checked the expressions of TUG1, Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and miR-195-5p in CRC tissues and cells. The TUG1 or miR-195-5p overexpression model was engineered in CRC cells, followed by treatment with DDP or the autophagy inhibitor (Chloroquine, CQ). CCK8 (Cell Counting Kit-8) and the colony formation experiment monitored cell proliferation. Flow cytometry examined apoptosis, Transwell tracked migration and invasion, and Western blot ascertained the protein profiles of autophagy proteins (LC3I/LC3II and Beclin1) and the HDGF/DDX5/β-catenin pathway. Dual-luciferase gene reporter assay and RNA immunoprecipitation confirmed the binding correlation between TUG1 and miR-195-5p and between miR-195-5p and HDGF. Furthermore, in-vivo experiments in nude mice probed the function and mechanism of IGF2BP2 in CRC cell growth. The profiles of TUG1 and IGF2BP2 were elevated in CRC tissues, and IGF2BP2 enhanced TUG1's expression in CRC cells. TUG1 activated autophagy to facilitate CRC cells' resistance to DDP. TUG1 targets miR-195-5p, and miR-195-5p targets HDGF. Overexpression of miR-195-5p abated the cancer-promoting function of TUG1 and curbed the profile of the HDGF/DDX5/β-catenin axis. TUG1 stabilized by IGF2BP2 boosted CRC cell proliferation, migration, migration, and autophagy via the miR-195-5p/HDGF/DDX5/β-catenin axis, hence enhancing CRC cell's resistance to DDP.
Collapse
Affiliation(s)
- Cuifeng Xia
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Qiang Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Tao Wu
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Pin Gao
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yongfang Gu
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Qujing, Qujing, Yunnan, China
| |
Collapse
|
11
|
lncRNA SNHG15 Induced by SOX12 Promotes the Tumorigenic Properties and Chemoresistance in Cervical Cancer via the miR-4735-3p/HIF1a Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8548461. [PMID: 35069980 PMCID: PMC8769851 DOI: 10.1155/2022/8548461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Cervical cancer (CC) is one of the most common malignancies in females, with high prevalence and mortality globally. Despite advances in diagnosis and therapeutic strategies developed in recent years, CC is still a major health burden worldwide. The molecular mechanisms underlying the development of CC need to be understood. In this study, we aimed to demonstrate the role of lncRNA SNHG15 in CC progression. Using qRT-PCR, we determined that lncRNA SNHG15 is highly expressed in CC tumor tissues and cells. lncRNA SNHG15 knockdown also reduces the tumorigenic properties of CC in vitro, as determined using the MTT, EdU, flow cytometry, and transwell assays. Using bioinformatics analysis, RNA pull-down, ChIP, and luciferase reporter assays, we verified the molecular mechanisms of lncRNA SNHG15 in CC progression and found that lncRNA SNHG15 expression in CC cells is transcriptionally regulated by SOX12; moreover, lncRNA SNHG15 promotes CC progression via the miR-4735-3p/HIF1a axis. This study can provide a potential target for CC diagnosis or therapeutic strategies in the future.
Collapse
|
12
|
Feng Q, Wang J, Cui N, Liu X, Wang H. Autophagy-related long non-coding RNA signature for potential prognostic biomarkers of patients with cervical cancer: a study based on public databases. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1668. [PMID: 34988177 PMCID: PMC8667135 DOI: 10.21037/atm-21-5156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Background Metastasis and recurrence are the main causes of death from cervical cancer (CC), thus it is important to identify more effective biomarkers to improve its prognosis. The purpose of our research was to determine the potential role of autophagy-related long non-coding RNA (lncRNA) in CC and to construct an autophagy-related lncRNA signature for survival of CC. Methods The lncRNAs in CC were downloaded from The Cancer Genome Atlas (TCGA) database, and autophagy-related lncRNAs were identified through the co-expression of lncRNA genes and autophagy genes. Several autophagy-related lncRNAs with prognostic value (AC012306.2, AL109976.1, ATP2A1-AS1, ILF3-DT, Z83851.2, STARD7-AS1, AC099343.2, AC008771.1, DBH-AS1, and AC097468.3) were identified using univariate and multivariate Cox regression analyses and a prognostic signature was established. The signature effect was detected by univariate Cox regression analysis [hazard ratio (HR) =1.665; 95% confidence interval (CI): 1.331–2.082; P<0.001] and multivariate Cox regression analysis (HR =1.738; 95% CI: 1.359–2.223; P<0.001). A nomogram was drawn by risk score and clinical features. Results The prognostic signature could predict the survival of CC by survival-receiver operating characteristic (ROC) curve [area under the curve (AUC) =0.810]. A nomogram was drawn by risk score and clinical features, and its c-index and calibration curve demonstrated that the prognostic signature could independently predict the prognosis of CC (P<0.001). Gene set enrichment analysis (GSEA) confirmed that the genes were significantly enriched in cancer- and autophagy-related pathways (P<0.05). Conclusions This 10 autophagy-related lncRNA signature has prognostic potential for CC. More important roles in the CC biology of these lncRNAs may be identified with further study.
Collapse
Affiliation(s)
- Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Wang
- Department of Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xian Liu
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haiyan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Guo H, Li T, Peng C, Mao Q, Shen B, Shi M, Lu H, Xiao T, Yang A, Liu Y. Overexpression of lncRNA A2M-AS1 inhibits cell growth and aggressiveness via regulating the miR-587/bone morphogenetic protein 3 axis in lung adenocarcinoma. Hum Exp Toxicol 2022; 41:9603271221138971. [PMID: 36461613 DOI: 10.1177/09603271221138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor that occurs in the lungs. Numerous reports have substantiated the participation of long non-coding RNAs (lncRNAs) in the tumorigenesis of LUAD. Previously, lncRNA alpha-2-macroglobulin antisense RNA 1 (A2M-AS1) was confirmed to be an important regulator in the biological processes of LUAD and dysregulation of A2M-AS1 was associated with non-small cell lung cancer (NSCLC) progression. However, the precise mechanism of A2M-AS1 in LUAD has not been elucidated. Therefore, our study was designed to investigate the detailed molecular mechanism of A2M-AS1 in LUAD. Herein, the expression of lncRNA A2M-AS1, microRNA (miRNA) miR-587, and bone morphogenetic protein 3 (BMP3) in LUAD cell lines and tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. The viability, proliferation, migration and invasion of LUAD cells were tested by cell counting kit-8 (CCK-8), colony formation and Transwell assays. In vivo tumor growth was investigated by xenograft animal experiment. Interactions among A2M-AS1, miR-587 and BMP3 were measured by RNA pulldown and luciferase reporter assays. In this study, A2M-AS1 was downregulated in LUAD tissues and cells and related to poor prognosis in LUAD patients. A2M-AS1 overexpression suppressed LUAD cell proliferation, migration and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, A2M-AS1 directly bound with miR-587 to promote BMP3 expression in LUAD cells. Low expression of BMP3 was found in LUAD tissues and cells and was closely correlated with poor prognosis in LUAD patients. BMP3 deficiency reserved the inhibitory influence of A2M-AS1 overexpression on LUAD cell behaviors. Overall, A2M-AS1 inhibits cell growth and aggressiveness via regulating the miR-587/BMP3 axis in LUAD.
Collapse
Affiliation(s)
- Hongfei Guo
- School of Basic Medical Sciences, 271667Nanjing Medical University, Nanjing, China
| | - Tao Li
- Department of Oncology, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Chunlei Peng
- Department of Oncology, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qinghua Mao
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Biao Shen
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Haimin Lu
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, North Hospital, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Aimin Yang
- Department of Thoracic Surgery, South Hospital, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yupeng Liu
- Department of Thoracic Surgery, 377323Tumor Hospital Affiliated to Nantong University, Nantong, China
| |
Collapse
|
14
|
Zhang J, Jiang P, Tu Y, Li N, Huang Y, Jiang S, Kong W, Yuan R. Identification and validation of long non-coding RNA associated ceRNAs in intrauterine adhesion. Bioengineered 2021; 13:1039-1048. [PMID: 34968168 PMCID: PMC8805920 DOI: 10.1080/21655979.2021.2017578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrotic disease with unclear pathogenesis. Increasing evidence suggested the important role of competitive endogenous RNA (ceRNA) in diseases. This study aimed to identify and verify the key long non-coding RNA (lncRNA) associated-ceRNAs in IUA. The lncRNA/mRNA expression file was obtained by transcriptome sequencing of IUA and normal samples. The microRNAs expression date was downloaded from the Gene Expression Omnibus database. Differential expressions of mRNAs, lncRNAs and miRNAs were analyzed using the DESeq2 (2010) R package. Protein interaction network was constructed to explore hub genes. TargetScan and miRanda databases were used to predicate the interaction. Enrichment analysis in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed to identify the biological functions of ceRNAs. Regression analysis of ceRNAs’ expression level was performed. There were 915 mRNAs and 418 lncRNAs differentially expressed. AURKA, CDC20, IL6, ASPM, CDCA8, BIRC5, UBE2C, H2AFX, RRM2 and CENPE were identified as hub genes. The ceRNAs network, including 28 lncRNAs, 28 miRNAs, and 299 mRNAs, was constructed. Regression analysis showed a good positive correlation between ceRNAs expression levels (r > 0.700, p < 0.001). The enriched functions include ion transmembrane transport, focal adhesion, cAMP signaling pathway and cGMP-PKG signaling pathway. The novel lncRNA-miRNA-mRNA network in IUA was excavated. Crucial lncRNAs such as ADIRF-AS1, LINC00632, DIO3OS, MBNL1-AS1, MIR1-1HG-AS1, AC100803.2 was involved in the development of IUA. cGMP-PKG signaling pathway and ion transport might be new directions for IUA pathogenesis research.
Collapse
Affiliation(s)
- Jingni Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Lai X, Chen J. C-X-C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy. Bioengineered 2021; 12:5428-5439. [PMID: 34424816 PMCID: PMC8806931 DOI: 10.1080/21655979.2021.1967029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by a mutant dystrophin protein. DMD patients undergo gradual progressive paralysis until death. Chronic glucocorticoid therapy remains one of the main treatments for DMD, despite the significant side effects. However, its mechanisms of action remain largely unknown. We used bioinformatics tools to identify pathogenic genes involved in DMD and glucocorticoid target genes. Two gene expression profiles containing data from DMD patients and healthy controls (GSE38417 and GSE109178) were downloaded for further analysis. Differentially expressed genes (DEGs) between DMD patients and controls were identified using GEO2R, and glucocorticoid target genes were predicted from the Pharmacogenetics and Pharmacogenomics Knowledge Base. Surprisingly, only one gene, CXCL12 (C-X-C motif chemokine ligand 12), was both a glucocorticoid target and a DEG. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, Gene Ontology term enrichment analysis, and gene set enrichment analysis were performed. A protein-protein interaction network was constructed and hub genes identified using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape. Enriched pathways involving the DEGs, including CXCL12, were associated with the immune response and inflammation. Levels of CXCL12 and its receptor CXCR4 (C-X-C motif chemokine receptor 4) were increased in X-linked muscular dystrophy (mdx) mice (DMD models) but became significantly reduced after prednisone treatment. Metformin also reduced the expression of CXCL12 and CXCR4 in mdx mice. In conclusion, the CXCL12-CXCR4 pathway may be a potential target for DMD therapy.
Collapse
Affiliation(s)
- Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Chen
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Tan X, Mao L, Huang C, Yang W, Guo J, Chen Z, Chen Z. Comprehensive analysis of lncRNA-miRNA-mRNA regulatory networks for microbiota-mediated colorectal cancer associated with immune cell infiltration. Bioengineered 2021; 12:3410-3425. [PMID: 34227920 PMCID: PMC8806860 DOI: 10.1080/21655979.2021.1940614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent findings have identified microbiota as crucial participants in many disease conditions, including cancers. Competing endogenous RNA (ceRNA) is regarded as a candidate mechanism involving relevant biological processes. We therefore constructed a ceRNA network using the TCGA and GEO database, to determine the potential mechanisms of microbiota-mediated colorectal carcinogenesis and progression. We found a total of 75 lncRNAs, 8 miRNAs, and 9 mRNAs in the probiotics-mediated ceRNA network and a total of 49 lncRNAs, 4 miRNAs, and 3 mRNA in the pathobiont-mediated ceRNA network, which could induce the microbiota-mediated carcinogenesis and progression. The GO and KEGG analysis indicated that the ceRNA network is mainly enriched in the metabolic process, and two unique pathways (the p53 signaling pathway and microRNA in cancer), respectively. A four-gene signature (FRMD6-AS2, DIRC3, LIFR-AS1, and MRPL23-AS1) was suggested as an independent prognostic factor. Four lncRNAs (LINC00355, KCNQ1OT1, LINC00491, and HOTAIR) were associated with poor survival. Three small molecule candidate anticancer drugs (Pentoxyverine, Rimexolone, and Doxylamine) were identified. A four-gene signature (FAM129A, BCL2, PMAIP1, and RPS6) is significantly correlated with immune infiltration level. This study provides a promising biomarker reservoir to explore the mechanism by which microbiota regulate the ceRNA network involving the immune response, and further participate in colorectal carcinogenesis and progression.
Collapse
Affiliation(s)
- Xiangzhou Tan
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Linfeng Mao
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Changhao Huang
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Weimin Yang
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Jianping Guo
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Zhikang Chen
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Zihua Chen
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan Province, China.,Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| |
Collapse
|
17
|
Liu XX, Bao QX, Li YM, Zhang YH. The promotion of cervical cancer progression by signal transducer and activator of transcription 1-induced up-regulation of lncRNA MEOX2-AS1 as a competing endogenous RNA through miR-143-3p/VDAC1 pathway. Bioengineered 2021; 12:3322-3335. [PMID: 34224325 PMCID: PMC8806930 DOI: 10.1080/21655979.2021.1947174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the new regulators and biomarkers for various tumors. However, in cervical cancer (CC), the potential roles of lncRNAs are not well characterized. This research aimed at exploring the roles of MEOX2 antisense RNA 1(MEOX2-AS1) in CC progression and the underlying mechanisms. The examination of MEOX2-AS1 levels in CC specimens and cell lines was conducted by RT-PCR. Loss-of-function experiments were performed for the assays of proliferation, migration, and invasion of CC cells after various treatments. Animal experiments were applied for the determination of the effects of MEOX2-AS1 in vivo. Bioinformatics analysis, together with dual-luciferase reporter assays, was applied to demonstrate the possible relationships among MEOX2-AS1, miR-143-3p and VDAC1. In the paper, we reported that MEOX2-AS1 levels were distinctly upregulated in CC cells and tissues, and higher MEOX2-AS1 expressions indicated a poor clinical outcome. Besides, STAT1 could activate transcriptions of MEOX2-AS1 by binding directly to its promoter region. The silence of MEOX2-AS1 suppressed the metastatic and proliferative ability of CC cells, as revealed by functional assays. Mechanistically, MEOX2-AS1 sponged miR-143-3p to regulate VDAC1 expressions. Furthermore, miR-143-3p inhibitor reversed the anti-proliferation and anti-metastasis effect of MEOX2-AS1 knockdown. Overall, the data indicated that the MEOX2-AS1/miR-143-3p/VDAC1 pathway participated in CC progression, making it a novel therapeutic target for CC cures.
Collapse
Affiliation(s)
- Xiao-Xing Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Qi-Xiu Bao
- Department of Public Health, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Yan-Mei Li
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Yan-Hua Zhang
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| |
Collapse
|
18
|
Yu Y, Liu L, Hu LL, Yu LL, Li JP, Rao JA, Zhu LJ, Liang Q, Zhang RW, Bao HH, Cheng XS. Potential therapeutic target genes for systemic lupus erythematosus: a bioinformatics analysis. Bioengineered 2021; 12:2810-2819. [PMID: 34180358 PMCID: PMC8806421 DOI: 10.1080/21655979.2021.1939637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. However, the underlying etiology and mechanisms remain unclear. This study was performed to identify potential therapeutic targets for SLE using bioinformatics methods. First, 584 differentially expressed genes were identified based on the GSE61635 dataset. Tissue-specific analyses, enrichment analyses, and Protein–Protein interaction network were successively conducted. Furthermore, ELISA was performed to confirm the expression levels of key genes in the control and SLE blood samples. The findings revealed that tissue-specific expression of markers of the hematological system (25.5%, 28/110) varied significantly. CCL2, MMP9, and RSAD2 expression was markedly increased in the SLE samples compared with controls. In conclusion, the identified key genes (CCL2, MMP9, and RSAD2) may act as possible therapeutic targets for the treatment of SLE.
Collapse
Affiliation(s)
- Yun Yu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang Liu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Long-Long Hu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ling-Ling Yu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Pei Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing-An Rao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ling-Juan Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Liang
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong-Wei Zhang
- Department of Rheumatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hui-Hui Bao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Liu Y, Ding Z, Zhang J, Song C, Zhang L, Liu Y. Highly Sensitive Detection of miRNA-155 Using Molecular Beacon-Functionalized Monolayer MoS₂ Nanosheet Probes with Duplex-Specific Nuclease-Mediated Signal Amplification. J Biomed Nanotechnol 2021; 17:1034-1043. [PMID: 34167618 DOI: 10.1166/jbn.2021.3096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA-155 (miRNA-155) as a characteristic myeloma-associated biomarker exhibits significant potential application in the diagnosis of multiple myeloma (MM). In this paper, a novel type of molecular beacon (MB)-functionalized monolayer MoS₂ nanosheet probe was proposed as fluorescent probe for high-sensitive assays of miRNA-155that uses a duplexspecificnuclease (DSN) enzyme to amplify the fluorescence signal. The preparation and detection conditions of the fluorescent probes were optimized in some aspects, such as the concentration of MoS₂ (0.80 μM) and DSN (0.2 U), and the incubation time of DSN (30 min). The probesexhibited a sensitive fluorescence response to miRNA-155 and the fluorescence signal of the assay was significantly amplified by the cleavage of DSN. The relationship between F/F0 and logC miRNA follows a linear calibration curve, and the limit of detection (LOD) of miRNA-155 in 10% human serum is calculated to be 10.96 fM based on this relationship. The good performance and fluorescence amplification effect of the fluorescent probe were confirmed by studying the recovery of miRNA-155 in 10% human serum, which was ranged from 98.32% to 106.3% with a relative standard deviation of less than 4.14%. Besides, the high expression of miRNA-155 in clinic blood of MM patients was sensitively distinguished from healthy peoples by using the proposed probes. The proposed novel fluorescent probe based on the DSN can be used to detect miRNA-155 in human serum and provide a potential, convenient and reliable tool for diagnosis of MM.
Collapse
Affiliation(s)
- Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhou Ding
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jingjing Zhang
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|