1
|
Yang W, Liu L, Li J, Liu Y, Rong L, Ma J, Li R, Zhang Q, Liu Y. Abnormal expression of miR-668-3p in non-small cell lung cancer patients and its correlation with serum-related tumor markers. J Cardiothorac Surg 2025; 20:58. [PMID: 39794840 PMCID: PMC11724551 DOI: 10.1186/s13019-024-03220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The accuracy and reliability of identified biomarkers in differentiating early non-small cell lung cancer (NSCLC) remain suboptimal, thereby impeding the timely detection of NSCLC.The objective of this research is to examine the expression level and diagnostic utility of miR-668-3p in individuals with NSCLC, along with its effectiveness and predictive capacity in the combined diagnosis of early-stage NSCLC using serum markers. METHODS The research included 117 NSCLC patients and 101 pulmonary nodule patients (controls). Quantitative PCR was employed to assess the expression levels of miR-668-3p in NSCLC patients. The association between miR-668-3p and clinical characteristics and serum biomarker (AFP, CEA, NSE, and CYFRA21-1) levels in NSCLC patients was examined using chi-square tests and Pearson correlation analyses. The ROC curve analysis was conducted to determine the individual and combined diagnostic efficacy of miR-668-3p and serum biomarkers. Additionally, a logistic regression model was utilized to identify risk factors for lung cancer in patients with pulmonary tuberculosis. RESULTS The expression level of miR-668-3p was down-regulated in early-stage NSCLC patients compared with the control group, and showed a significant association with serum biomarkers related with disease progression, tumor staging, and lymph node metastasis. The combined detection of miR-668-3p and serum markers demonstrated robust diagnostic efficacy for early NSCLC and effective predictive capabilities for lung cancer occurrence in individuals with pulmonary nodules. CONCLUSIONS The miR-668-3p has the potential to be a promising biomarker for NSCLC and enhance the accuracy of early NSCLC clinical detection.
Collapse
Affiliation(s)
- Wen Yang
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ling Liu
- Department of Pulmonary and Critical Care Medicine, Chongqing Southwest Aluminum Hospital, Chongqing, 401326, China
| | - Jianliang Li
- Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Linqing, 252600, China
| | - Yingchao Liu
- Department of Clinical Laboratory, The Second People's Hospital of Liaocheng, No. 306, Health Street, Linqing, Shandong Province, 252600, China
| | - Lin Rong
- Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Linqing, 252600, China
| | - Junjie Ma
- Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Linqing, 252600, China
| | - Rongchen Li
- Department of Clinical Laboratory, The Second People's Hospital of Liaocheng, No. 306, Health Street, Linqing, Shandong Province, 252600, China
| | - Qiuyue Zhang
- Department of Clinical Laboratory, The Second People's Hospital of Liaocheng, No. 306, Health Street, Linqing, Shandong Province, 252600, China.
| | - Yugang Liu
- Department of Oncology, The 969th Hospital of the PLA joint Logistics Support Force, No. 57, Aimin Street, Xincheng District, Hohhot City, Inner Mongolia Autonomous Region, 010051, China.
| |
Collapse
|
2
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
3
|
Elango R, Radhakrishnan V, Rashid S, Al-Sarraf R, Akhtar M, Ouararhni K, Alajez NM. Long noncoding RNA profiling unveils LINC00960 as unfavorable prognostic biomarker promoting triple negative breast cancer progression. Cell Death Discov 2024; 10:333. [PMID: 39039064 PMCID: PMC11263344 DOI: 10.1038/s41420-024-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play a critical role in breast cancer pathogenesis, including Triple-Negative Breast Cancer (TNBC) subtype. Identifying the lncRNA expression patterns across different breast cancer subtypes could provide valuable insights into their potential utilization as disease biomarkers and therapeutic targets. In this study, we profiled lncRNA expression in 96 breast cancer cases, revealing significant differences compared to normal breast tissue. Variations across breast cancer subtypes, including Hormone Receptor-positive (HR + ), HER2-positive (HER2 + ), HER2 + HR + , and TNBC, as well as in relation to tumor grade and patients' age at diagnosis were observed. TNBC and HER2+ subtypes showed distinct clustering, while HER2 + HR+ tumors clustered closer to HR+ tumors based on their lncRNA profiles. Our data identified numerous enriched lncRNAs in TNBC, notably the elevated expression of LINC00960, which was subsequently validated in two additional datasets. Analysis of LINC00960 expression in an independent TNBC cohort (n = 360) revealed elevated expression of LINC00960 to correlate with cell movement, invasion, proliferation, and migration functional categories. Depletion of LINC00960 significantly reduced TNBC cell viability, colony formation, migration, and three-dimensional growth, while increasing cell death. Mechanistically, transcriptomic profiling of LINC00960-depleted cells confirmed its tumor-promoting role, likely through sponging of hsa-miR-34a-5p, hsa-miR-16-5p, and hsa-miR-183-5p, leading to the upregulation of cancer-promoting genes including BMI1, KRAS, and AKT3. Our findings highlight the distinct lncRNA expression patterns in breast cancer subtypes and underscore the crucial role for LINC00960 in promoting TNBC pathogenesis, suggesting its potential utilization as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Ramesh Elango
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Vishnubalaji Radhakrishnan
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Sameera Rashid
- Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Reem Al-Sarraf
- Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohammed Akhtar
- Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Hamad Bin Khalifa University, Qatar Foundation, Doha, P.O. Box 34110, Qatar
| | - Nehad M Alajez
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
4
|
Zhang Y, Lu G, Guan Y, Xu T, Duan Z, Li G. LINC00960 affects osteosarcoma treatment and prognosis by regulating the tumor immune microenvironment. Heliyon 2024; 10:e24990. [PMID: 38352756 PMCID: PMC10862516 DOI: 10.1016/j.heliyon.2024.e24990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Background Osteosarcoma (OS), the commonest primary malignant bone tumor, is mainly seen in children and teenagers. LINC00960, a newly discovered long intergenic non-protein coding RNA, has been shown to be important in certain cancers. The objective of this study was to assess LINC00960's prognostic and therapeutic value and analyze its mechanism of action in osteosarcoma. Methods With the transcriptome information of 85 osteosarcomas from the TARGET database, the Cox regression analyses, K-M curve, and ROC curve, were conducted for survival and prognostic analysis. The functional analysis was conducted using GO, KEGG, GSEA, and GSVA. The ESTIMATE, ssGSEA, MCP-counter, ImmuCellAI algorithms, and immune checkpoint correlation analysis were performed for immune-related analysis. The single-cell RNA sequencing data of 6 osteosarcoma patients was obtained from the Gene Expression Omnibus database. The Tumor Immune Dysfunction and Exclusion algorithm and the "pRRophetic" R package were performed to predict the response to immunotherapy and chemotherapy. Results LINC00960 overexpression is associated with osteosarcoma metastasis and poor prognosis. Based on the LINC00960 expression, the nomogram prediction model was created, which showed good accuracy and precision to predict the overall survival of osteosarcoma. Single-cell and immune-related analysis showed that LINC00960 is mainly highly expressed in the tumor-exhausted CD8 T cells in osteosarcoma. In osteosarcoma, the expression of LIC00960 was favorably connected with immune checkpoint-related genes and negatively correlated with immune infiltration. TIDE analysis indicated that low LINC00960 expression patients might have a better response to immunotherapy. Drug sensitivity analysis showed that high LINC00960 expression patients might have better responses to Bleomycin and Doxorubicin. Conclusion LINC00960 has the potential to be a novel biomarker for predicting overall survival in osteosarcoma patients and to guide more individualized treatment and clinical decision-making.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guanghua Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yonghao Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengwei Duan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
5
|
Allameh A, Atashbasteh M, Mortaz E, Naeeni B, Jafari-Khorchani M. Down-regulation of key regulatory factors in sphingosine-1-phosphate (S1P) pathway in human lung fibroblasts transfected with selected microRNAs. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:201-209. [PMID: 39315290 PMCID: PMC11416850 DOI: 10.22099/mbrc.2024.49810.1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sphingosine 1 phosphate (S1P) is involved in the pathogenesis of asthma by stimulation of the alpha-smooth muscle actin (SMA) expression and remodeling of fibroblasts. This study was designed to determine the effects of selected micro RNAs in regulation of S1P and related metabolic pathways in a human lung fibroblast cell line. The fibroblast cell line (CIRC-HLF, C580) was cultured and transfected with individual viral vectors carrying miR124, mi125b, mi133b or mi130a. After 48 hours, expression level of miRNAs and their target genes, sphingosine kinase 1(SPHK1), sphingosine 1-phosphate lyase 1 (SGPL1), sphingosine 1- phosphate receptor 1 (S1PR1) and sphingosine 1- phosphate receptor 2 (S1PR2) were determined. Expression of miRNA and mRNA determined by reverse transcriptionquantitative polymerase chain reaction (qPCR) showed that the expression level of the miRNAs was significantly higher in human lung fibroblasts following transfection compared to controls (vector backbone without miRNA). The expressions of miRNAs-targeted genes were significantly downregulated in transfected fibroblasts compared to control cells (p<0.05). Data show that miR 124, miR 125b, miR 133b and miR130a by targeting regulatory genes in S1P-pathway can down-regulate key factors such as SPHK1, SGPL1, S1PR1 and S1PR2 genes in lung fibroblasts. The results showed that S1P pathway and key factors are suppressed in lung fibroblasts expressing miR124, miR125b, miR130a or miR133b. It appears that suppression of any of the intermediate factors in S1P by miRNA can affect the regulation of the entire S1P pathway.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Atashbasteh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Naeeni
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Jafari-Khorchani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Liu J, Zhang F, Wang J, Wang Y. MicroRNA‑mediated regulation in lung adenocarcinoma: Signaling pathways and potential therapeutic implications (Review). Oncol Rep 2023; 50:211. [PMID: 37859595 PMCID: PMC10603552 DOI: 10.3892/or.2023.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) poses a significant global health burden owing to its high incidence rate and unfavorable prognosis, driven by frequent recurrence and drug resistance. Understanding the biological mechanisms underlying LUAD is imperative to developing advanced therapeutic strategies. Recent research has highlighted the role of dysregulated microRNAs (miRNAs) in LUAD progression through diverse signaling pathways, including the Wnt and AKT pathways. Of particular interest is the novel pathological mechanism involving the interaction between competing endogenous RNAs (ceRNAs) and miRNAs. This review critically analyzed the impact of aberrant miRNA expression on LUAD development, shedding light on the associated signaling pathways. It also highlighted the emerging significance of ceRNA‑miRNA interactions in LUAD pathogenesis. Elucidating the intricate regulatory networks involving miRNAs and ceRNAs presents a promising avenue for the development of potential therapeutic interventions and diagnostic biomarkers in LUAD. Further research in this area is essential to advance precision medicine approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
- Department of Rehabilitation Medicine, Huludao Central Hospital, Huludao, Liaoning 125000, P.R. China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
7
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Tan J, Mao W, Long S, Zhang T. Metastasis-related long non-coding RNAs AL359220.1, SH3BP5-AS1 and ZF-AS1 are significant for prognostic assessment of lung adenocarcinoma. Aging (Albany NY) 2023; 15:7551-7564. [PMID: 37566767 PMCID: PMC10457074 DOI: 10.18632/aging.204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Metastasis of lung adenocarcinoma (LUAD) severely worsens prognosis. Genetic alteration in the tumor microenvironment (TME) is closely associated with metastasis and other malignant biological properties of LUAD. In this study, we establish a metastasis-related risk model to accurately predict LUAD prognosis. METHODS RNA-sequencing profiles and clinical data of LUAD patients including 503 tumor tissues and 54 adjacent normal tissues were collected in TCGA database. Additionally, the paired specimens from 156 LUAD patients were obtained in a single center. The metastatic relevance and clinical significance of metastasis-related long non-coding RNA (MRLNRs) was validated by series of in vitro experiments including western blotting, qPCR and transwell assays. RESULTS Six MRLNRs were significantly correlated to prognoses of LUAD patients, of which AL359220.1, SH3BP5-AS1 and ZF-AS1 were further used to establish a metastasis-related risk scoring model (MRRS) due to the close associations with overall survival of LUAD patients. According to the MRRS, patients with higher scores in the high-risk group obtained poorer prognoses and survival outcomes. ZFAS1 expressed highly in tumor tissues and showed the inverse results compared to SH3BP5-AS1 and AL359220.1. In addition, the high expression of ZFAS1 was prominently correlated to the more advanced T-stage and distant metastasis. The reduction of ZFAS1 induced by siRNAs dramatically diminished the migration and invasion abilities of LUAD cells. CONCLUSIONS In the present research, we elucidate the metastatic relevance and clinical significance of AL359220.1, SH3BP5-AS1 and ZF-AS1 in LUAD. Moreover, MRRS provide a promising assessing model for clinical decision making and prognosis of LUAD.
Collapse
Affiliation(s)
- Jianjun Tan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Three Gorges Hospital of Chongqing University, Chongqing 404000, China
| | - Weilin Mao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuzi Long
- Department of Oncology, Three Gorges Hospital of Chongqing University, Chongqing 404000, China
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
lncRNA LINC00960 promotes apoptosis by sponging ubiquitin ligase Nrdp1-targeting miR-183-5p. Acta Biochim Biophys Sin (Shanghai) 2023; 55:91-102. [PMID: 36722261 PMCID: PMC10157604 DOI: 10.3724/abbs.2023005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
<p indent="0mm">The ubiquitin ligase Nrdp1/RNF41 promotes the ubiquitin-dependent degradation of multiple important substrates, including BRUCE/BIRC6, a giant ubiquitin-conjugating enzyme inhibiting both apoptosis and autophagy. miR-183-5p is associated with various malignancies potentially by targeting dozens of genes. Here, we show that the lncRNA LINC00960 binds to the Nrdp1-targeting miR-183-5p and promotes apoptosis. Compared to other known miR-183-5p targets, Nrdp1 mRNA is among the few with top scores to complement miR-183-5p. miR-183-5p binds to the <sc>3'UTR</sc> of Nrdp1 mRNA and downregulates Nrdp1 at both the mRNA and protein levels. The miR-183-5p mimics inhibit DNA damage-induced apoptosis probably by upregulating BRUCE level, whereas the miR-183-5p inhibitor suppresses the effects of miR-183-5p. LINC00960 is the noncoding RNA with the highest score to complement miR-183-5p. LINC00960 overexpression reduces, but its knockdown increases, the level of miR-183-5p, whereas LINC00960 overexpression increases, but its knockdown decreases, the level of Nrdp1 and apoptosis. Importantly, the expression of LINC00960, which is associated with multiple types of tumors, positively correlates with that of Nrdp1 in several tumors but inversely correlates with that of miR-183-5p in multiple human tumor cell lines, as analysed by quantitative PCR. Thus, miR-183-5p downregulates Nrdp1 expression and inhibits apoptosis, whereas LINC00960 upregulates Nrdp1 and promotes apoptosis by inhibiting miR-183-5p. These results may provide new ideas for the prevention, diagnosis and treatment of apoptosis-related diseases, such as tumors and neurodegenerative diseases. </p>.
Collapse
|
10
|
Zhou B, Lei JH, Wang Q, Qu TF, Cha LC, Zhan HX, Liu SL, Hu X, Sun CD, Cao JY, Qiu FB, Guo WD. LINC00960 regulates cell proliferation and glycolysis in pancreatic cancer through the miR-326-3p/TUFT1/AKT-mTOR axis. Kaohsiung J Med Sci 2022; 38:1155-1167. [PMID: 36149758 DOI: 10.1002/kjm2.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a common malignant cancer characterized by high mortality and poor prognosis. LINC00690 was involved in the occurrence and progression of PC, but the underlying mechanisms require further investigation. The goal of this study was to figure out how LINC00960 mediates glycolysis in PC. LINC00960, miR-326-3p, and Tuftelin 1 (TUFT1) expression levels were detected in PC cell lines. LINC00960 and TUFT1 expression levels were increased in PC cells when compared with normal pancreatic cells, whereas miR-326-3p expression levels were decreased. The expression levels of LINC00690 affected glycolysis in PC, and inhibition of LINC00960 inhibited tumor growth in vivo. LINC00690 targeted and suppressed the expression of miR-326-3p. MiR-326-3p bound to TUFT1, and miR-326-3p inhibited AKT-mTOR pathway activation via TUFT1. In conclusion, the depletion of LINC00960 repressed cell proliferation and glycolysis in PC by mediating the miR-326-3p/TUFT1/AKT-mTOR axis. Thus, we present a novel mechanism underlying the progression of PC that suggests LINC00960 is a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing-Hao Lei
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Teng-Fei Qu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Li-Chao Cha
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Shang-Long Liu
- Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chuan-Dong Sun
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing-Yu Cao
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fa-Bo Qiu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Wei-Dong Guo
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Wang Z, Tian Q, Tian Y, Zheng Z. MicroRNA-122-3p plays as the target of long non-coding RNA LINC00665 in repressing the progress of arthritis. Bioengineered 2022; 13:13328-13340. [PMID: 35635065 PMCID: PMC9275898 DOI: 10.1080/21655979.2022.2081757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in many diseases, including rheumatoid arthritis (RA). However, the mechanisms underlying the effects of miR-122-3p-3p on RA are not distinct and require further investigation. Patients with RA and healthy controls were recruited to analyze the miR-122-3p levels. The MH7A cells were stimulated with interleukin (IL)-1β to mimic the local inflammation of RA. Cell Counting Kit-8 (CCK-8) and flow cytometry were performed to measure the viability and apoptosis of MH7A cells. Diana tools and TargetScan were used to predict the target relationships. Luciferase reporter assay was used to validate the target relationship. miR-122-3p is downregulated in RA patients and IL-1β-stimulated MH7A cells. miR-122-3p suppresses MH7A cell viability and promotes MH7A cell apoptosis. miR-122-3p targets LINC00665. LINC00665 eliminates the inhibitory effect of miR-122-3p on IL-1β-stimulated MH7A cells. Eukaryotic translation initiation factor 2 alpha kinase 1 (EIF2AK1) targets miR-122-3p. In addition, EIF2AK1 is highly expressed in patients with RA. In addition, EIF2AK1 activates the mTOR signaling pathway. miR-122-3p represses RA progression by reducing cell viability and increasing synoviocyte apoptosis.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Rheumatology, Shouguang People’s Hospital, Shouguang, Shandong, P.R. China
| | - Qijun Tian
- Trauma orthopedics, The No. 4 hospital of Jinan, Jinan, Shandong, P.R. China
| | - Yumei Tian
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, P.R. China
| | - Zhonghua Zheng
- Department of Teaching Supervision and Evaluation, JILin Medical University, Jilin, Jilin, P.R. China
| |
Collapse
|
12
|
Sun C, Shi C, Duan X, Zhang Y, Wang B. Exosomal microRNA-618 derived from mesenchymal stem cells attenuate the progression of hepatic fibrosis by targeting Smad4. Bioengineered 2022; 13:5915-5927. [PMID: 35199612 PMCID: PMC8973762 DOI: 10.1080/21655979.2021.2023799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic fibrosis (HF) is a pathological phenomenon that occurs during the process of long-term damage and repair in the liver. This condition will lead to the development of cirrhosis and even liver cancer if untreated. Previous evidence has shown that exosomes derived from mesenchymal stem cells (MSCs), carrying microRNAs (miRs), can affect the pathogenesis of HF. Therefore, the present study aimed to identify novel exosomal miRs derived from MSCs that play a critical role in the progression of HF. Next, the expression data of differentially expressed miRs (DEMs) of patients with liver cirrhosis and healthy controls were obtained from the Gene Expression Omnibus dataset. DEMs were analyzed using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, to further confirm the function of exosomal miR-618 derived from MSCs on the pathogenesis of HF in vivo, a mouse model of HF was established. The results of the present study suggested that a close associated existed between DEMs and HF. Based on the results of the bioinformatics analysis, miR-618 was one of the main downregulated miRs involved in cirrhosis. In addition, miR-618 could be transferred from MSCs to LX-2 cells via exosomes; exosomal miR-618 derived from MSCs inhibited the viability and migration of LX-2 cells that were treated with TGF-β. Furthermore, exosomal miR-618 derived from MSCs attenuated the progression of HF via targeting Smad4. These findings indicated that treatment of exosomal miR-618 derived from MSCs might serve as a new strategy for HF.
Collapse
Affiliation(s)
- Chao Sun
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuicui Shi
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Duan
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocan Wang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Li T, Peng Y, Chen Y, Huang X, Li X, Zhang Z, Du J. Long intergenic non-coding RNA -00917 regulates the proliferation, inflammation, and pyroptosis of nucleus pulposus cells via targeting miR-149-5p/NOD-like receptor protein 1 axis. Bioengineered 2022; 13:6036-6047. [PMID: 35184666 PMCID: PMC8974084 DOI: 10.1080/21655979.2022.2043100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tengfei Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Ye Peng
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Yufei Chen
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Zhenyu Zhang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| |
Collapse
|