1
|
Rahman MS, Ghorai S, Panda K, Santiago MJ, Aggarwal S, Wang T, Rahman I, Chinnapaiyan S, Unwalla HJ. Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease. Noncoding RNA Res 2025; 11:22-37. [PMID: 39736851 PMCID: PMC11683234 DOI: 10.1016/j.ncrna.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025] Open
Abstract
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary systems.
Collapse
Affiliation(s)
- Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ting Wang
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
2
|
Pant A, Moar K, Arora TK, Dakal TC, Ranga V, Sharma NK, Maurya PK. Deciphering the role of circulating miRNAs in the etiology and pathophysiology of endometriosis: An updated compiled review. Exp Cell Res 2025; 446:114482. [PMID: 40015501 DOI: 10.1016/j.yexcr.2025.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Endometriosis is characterized by the presence of endometrial tissue outside of the uterus. It is a benign chronic condition with incapacitating symptoms like infertility and pelvic pain. Endometriosis has a detrimental impact on the reproductive health of women, placing a heavy financial strain on the medical system. It is a multifactorial disorder governed by numerous mechanisms or risk factors that contribute to the pathologies of the disease. With limitations in diagnostics techniques, it is challenging to detect the disease at an initial stage. In around 1 % of endometriotic patients malignant state may reach, leading to severe consequences. To overcome such challenges, at present, numerous circulating miRNAs have been studied in plasma or serum samples from patients with endometriosis to develop a non-invasive diagnostic biomarker-based tool to identify the disease early. Our review compiles the miRNAs in bodily fluids that are linked with endometriosis-related mechanisms, which may serve as a potential biomarker. Some of these mechanisms are common in both cancer and endometriosis. Additionally, we have also emphasised the miRNAs with a putative role in cancer development and progression that could be used as a biomarker. This may further aid in protecting the 1 % of affected females from ovarian, breast, and in some cases endometrial cancer. We have come across several miRNAs associated with multiple mechanisms associated with endometriosis. miR-199a and miRNAs-let-7 family are some of the most common miRNAs that assist in multiple mechanisms such as cell proliferation, invasion, apoptosis, and epithelial-mesenchymal transition. Strategic planning and additional investigation into the identified miRNAs would make them a viable therapeutic target for the optimal management of endometriosis.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India, 123031
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India, 123031
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi, 110029, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, 304022, Rajasthan, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India, 123031.
| |
Collapse
|
3
|
Zheng L, Xu Z, Zhang W, Lin H, Zhang Y, Zhou S, Liu Z, Gu X. Identification and validation of a prognostic signature based on six immune-related genes for colorectal cancer. Discov Oncol 2024; 15:192. [PMID: 38806963 PMCID: PMC11133253 DOI: 10.1007/s12672-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy with high mortality and morbidity rates. Although the significant efficacy of immunotherapy is well established, it is only beneficial for a limited number of individuals with CRC. METHODS Differentially expressed immune-related genes (DE-IRGs) were retrieved from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and ImmPort databases. A prognostic signature comprising DE-IRGs was developed using univariate, LASSO, and multivariate Cox regression analyses. A nomogram integrating the independent prognostic factors was also developed. CIBERSORT was used to assess immune cell infiltration (ICI). Furthermore, wound-healing, colony formation, migration, and invasion assays were performed to study the involvement of ACTG1 in CRC. RESULTS A signature including six DE-IRGs was developed. The overall survival (OS) rate was accurately estimated for TCGA and GSE38832 cohorts. The risk score (RS) of the signature was an independent factor for OS. Moreover, a nomogram encompassing age, RS, and pathological T stage accurately predicted the long-term OS probability of individuals with CRC. The high-risk group had an elevated proportion of patients treated with ICIs, including native B cells, relative to the low-risk group. Additionally, ACTG1 expression was upregulated, which supported the proliferation, migration, and invasion abilities of CRC cells. CONCLUSIONS An immune-related prognostic signature was developed for predicting OS and for determining the immune status of individuals with CRC. The present study provides new insights into accurate immunotherapy for individuals with CRC. Moreover, ACTG1 may serve as a new immune biomarker.
Collapse
Affiliation(s)
- Lifeng Zheng
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Ziyu Xu
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Wulou Zhang
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Hao Lin
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Yepeng Zhang
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China
| | - Shu Zhou
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China.
| | - Zonghang Liu
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China.
| | - Xi Gu
- Department of General Surgery, Nanjing Jiangbei Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Zhao Q, Li H, Li W, Guo Z, Jia W, Xu S, Chen S, Shen X, Wang C. Identification and verification of a prognostic signature based on a miRNA-mRNA interaction pattern in colon adenocarcinoma. Front Cell Dev Biol 2023; 11:1161667. [PMID: 37745305 PMCID: PMC10511881 DOI: 10.3389/fcell.2023.1161667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
The expression characteristics of non-coding RNA (ncRNA) in colon adenocarcinoma (COAD) are involved in regulating various biological processes. To achieve these functions, ncRNA and a member of the Argonaute protein family form an RNA-induced silencing complex (RISC). The RISC is directed by ncRNA, especially microRNA (miRNA), to bind the target complementary mRNAs and regulate their expression by interfering with mRNA cleavage, degradation, or translation. However, how to identify potential miRNA biomarkers and therapeutic targets remains unclear. Here, we performed differential gene screening based on The Cancer Genome Atlas dataset and annotated meaningful differential genes to enrich related biological processes and regulatory cancer pathways. According to the overlap between the screened differential mRNAs and differential miRNAs, a prognosis model based on a least absolute shrinkage and selection operator-based Cox proportional hazards regression analysis can be established to obtain better prognosis characteristics. To further explore the therapeutic potential of miRNA as a target of mRNA intervention, we conducted an immunohistochemical analysis and evaluated the expression level in the tissue microarray of 100 colorectal cancer patients. The results demonstrated that the expression level of POU4F1, DNASE1L2, and WDR72 in the signature was significantly upregulated in COAD and correlated with poor prognosis. Establishing a prognostic signature based on miRNA target genes will help elucidate the molecular pathogenesis of COAD and provide novel potential targets for RNA therapy.
Collapse
Affiliation(s)
- Qiwu Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haosheng Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchang Li
- Department of Interventional Radiography, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Guo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuiyu Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sixia Chen
- Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
6
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Interplays between non-coding RNAs and chemokines in digestive system cancers. Biomed Pharmacother 2022; 152:113237. [PMID: 35716438 DOI: 10.1016/j.biopha.2022.113237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Within tumors, chemokines and their cognate receptors are expressed by infiltrated leukocytes, cancerous cells, and related cells of stroma, like tumor-associated fibroblasts and tumor-associated macrophages. In malignancies, the altered expression of chemokines/chemokine receptors governs leukocyte infiltration and activation, epithelial-mesenchymal transition (EMT), cancer cell proliferation, angiogenesis, and metastasis. Non-coding RNAs (ncRNAs) contribute to multiple physiological and pathophysiological processes. Some miRNAs can exert anti-tumorigenic activity in digestive system malignancies by repressing the expression of tumor-promoting chemokines/chemokine receptors or by upregulating tumor-suppressing chemokines/chemokine receptors. However, many miRNAs exert pro-tumorigenic activity by suppressing the expression of chemokines/chemokine receptors or by upregulating tumor-promoting chemokines/chemokine receptors. LncRNA and circRNAs also exert pro- and anti-tumorigenic effects by targeting downstream miRNAs influencing the expression of tumor-promoting and tumor-suppressor chemokines/chemokine receptors. On the other side, some chemokines influence the expression of ncRNAs affecting tumor formation. The current review explains the communications between ncRNAs and chemokines/chemokine receptors in certain digestive system malignancies, such as gastric, colorectal, and pancreatic cancers and hepatocellular carcinoma to gain better insights into their basic crosstalk as well as possible therapeutic modalities.
Collapse
|
8
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
9
|
Ding R, Hong W, Huang L, Shao J, Yu W, Xu X. Examination of the effects of microRNA-145-5p and phosphoserine aminotransferase 1 in colon cancer. Bioengineered 2022; 13:12794-12806. [PMID: 35615948 PMCID: PMC9275947 DOI: 10.1080/21655979.2022.2071010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies manifested that microRNA-145-5p is pivotal in the development of various cancers. Nevertheless, the potential function of microRNA-145-5p in colorectal cancer remains unclear. This study attempted to investigate the potential role and possible mechanism of microRNA-145-5p in colon cancer. MicroRNA-145-5p and phosphoserine aminotransferase 1 (PSAT1) levels in colon cancer cells were assayed via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation and cell cycle status were assessed using Cell Counting Kit-8, colony formation, and flow cytometry. The target binding relationship of microRNA-145-5p and PSAT1 was identified using bioinformatics analysis and dual-luciferase reporter gene assay. The result of qRT-PCR disclosed that microRNA-145-5p was markedly down-regulated and PSAT1 level was up-regulated in colon cancer cell lines. Besides, enforced microRNA-145-5p level repressed proliferation of colon cancer cells, and cells were arrested in G0-G1 phase. Bioinformatics analysis and dual-luciferase reporter genes confirmed that PSAT1 was a downstream target of microRNA-145-5p. Enforced PSAT1 level remarkably modulated cell cycle and fostered cell proliferation. Furthermore, rescue experiments displayed that microRNA-145-5p restrained cell cycle progression and cell proliferation and forced PSAT1 level could partially reverse this process. Taken together, our findings demonstrated that microRNA-145-5p repressed colon cancer cell cycle progression and cell proliferation via targeting PSAT1. Our findings identified microRNA-145-5p as an essential tumor repressor gene in colon cancer and may provide a novel biomarker for colon cancer.
Collapse
Affiliation(s)
- Ruliang Ding
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Weiwen Hong
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Liang Huang
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Jinfan Shao
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Wenfeng Yu
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| | - Xijuan Xu
- Department of Anorectal Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang Province, China
| |
Collapse
|
10
|
Zhou Y, Cai W, Lu H. Overexpression of microRNA-145 enhanced docetaxel sensitivity in breast cancer cells via inactivation of protein kinase B gamma-mediated phosphoinositide 3-kinase -protein kinase B pathway. Bioengineered 2022; 13:11310-11320. [PMID: 35499128 PMCID: PMC9278436 DOI: 10.1080/21655979.2022.2068756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Chemoresistance is a major challenge for the treatment of breast cancer (BC). Previous studies showed that miR-145 level decreases in chemoresistant BC tissues. Nevertheless, the biological function of miR-145 on docetaxel resistance of BC cells remains unclear, which is what our research attempted to clarify. RT-qPCR analyzed miR-145 level, and cell viability and colony formation assays assessed the impact of miR-145 on docetaxel resistance. Molecular mechanisms of miR-145-mediated docetaxel sensitivity were examined by Luciferase reporter assay and Western Blot assessed the function of AKT3 and PI3K/AKT signaling. Our research found that miR-145 expression presented significant downregulation in docetaxel-resistant BC cells. Meanwhile, miR-145 overexpression facilitated the docetaxel sensitivity of BC cells in vivo and in vitro, while the miR-145 inhibitor decreased the sensitivity of BC cells to docetaxel. We also observed that miR-145 inhibited docetaxel resistance mainly via downregulation of the AKT3 expression and further inhibited PI3K/AKT pathway. To conclude, this research provides a novel strategy for improving chemosensitivity through the newly identified miR-145-AKT3/PI3K-AKT signaling pathway in BC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou, Jiangsu, China
| | - Wei Cai
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou, Jiangsu, China
| | - Hailin Lu
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Zhang M, Zheng J, Guo J, Zhang Q, Du J, Zhao X, Wang Z, Liao Q. SIA-IgG confers poor prognosis and represents a novel therapeutic target in breast cancer. Bioengineered 2022; 13:10072-10087. [PMID: 35473571 PMCID: PMC9208471 DOI: 10.1080/21655979.2022.2063593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The incidence rate of breast cancer is the highest in the world, and major problem in the clinical treatment is the therapy resistance of breast cancer stem cells (CSCs). Thus, new therapeutic approaches targeting breast CSCs are needed. Our previous study demonstrated cancer-derived sialylated IgG (SIA-IgG) is highly expressed in cancer cells with stem/progenitor features. Furthermore, a high frequency of SIA-IgG in breast cancer tissue predicted metastasis and correlated with poor prognosis factors, and depletion of IgG in breast cancer leads to lower malignancy of cancer cells, suggesting SIA-IgG could be a potential therapeutic target in breast cancer. In this study, we first investigated the relationship of SIA-IgG expression with the clinicopathological characteristics and clinical prognosis of breast carcinoma patients, and the data confirmed that the expression of SIA-IgG confers poor prognosis in breast cancer. Successively, by using a monoclonal antibody specifically against SIA-IgG, we targeted SIA-IgG on the surface of MDA-MB-231 cells and detected their functional changes, and the results suggested SIA-IgG to be a promising antibody therapeutic target in breast cancer. In addition, we explored the mechanism of action at the molecular level of SIA-IgG on breast cancer cell, the findings suggest that SIA-IgG promotes proliferation, metastasis, and invasion of breast cancer cells through the Wnt/β-catenin signaling pathway. Developing therapeutic antibody needs effective therapeutic target, and the antibody should better be a monoclonal antibody with high affinity and high specificity. This study provides a potential prognostic marker and a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Man Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Jinhua Zheng
- Department of Pathology, Guilin Medical University Affiliated Hospital, Guilin, Guangxi province, China
| | - Junying Guo
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Juan Du
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Zhihua Wang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| |
Collapse
|
12
|
Li D, Wang D, Liu H, Jiang X. LEM domain containing 1 (LEMD1) transcriptionally activated by SRY-related high-mobility-group box 4 (SOX4) accelerates the progression of colon cancer by upregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Bioengineered 2022; 13:8087-8100. [PMID: 35294319 PMCID: PMC9161920 DOI: 10.1080/21655979.2022.2047556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Colon cancer is a highly malignant tumor in the digestive system. LEM domain containing 1 (LEMD1) is supposed to be a survival marker of poor prognosis in colon cancer. We aimed to explore the role and mechanism of LEMD1 in colon cancer progression. GEPIA database analyzed LEMD1 expression in colon cancer tissues and prognosis of colon cancer patients. LEMD1 expression in tumor cells was tested by RT-qPCR and western blotting. Proliferation of colon cancer cells was estimated by CCK-8 and colony formation assays. Transwell and wound healing assays were used to appraise the cell invasion and migration. Meanwhile, tube formation assays were used to evaluate angiogenesis. The possible binding sites between SRY-related high-mobility-group box 4 (SOX4) and LEMD1 were predicted by JASPAR database. Besides, SOX4 expression in colon cancer tissues and the correlation between SOX4 and LEMD1 were examined using the GEPIA database. Luciferase reporter and ChIP assays were used to verify the interaction between SOX4 and LEMD1. The expression of proteins in PI3K/Akt signaling was evaluated by western blotting. LEMD1 was overexpressed in colon cancer tissues and cells and associated with poor prognosis. Functionally, LEMD1 deficiency impeded the proliferation, migration, invasion and angiogenesis of colon cancer cells. Additionally, SOX4 had a positive correlation with LEMD1 and could bind to LEMD1 promoter. Rescue assays validated that SOX4 elevation reversed the suppressive role of LEMD1 deletion in the development of colon cancer and the expression of p-PI3K and p-AKT. Collectively, LEMD1 induced by SOX4 drove the progression of colon cancer by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ding Li
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Haofeng Liu
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Nantong University, Nantong Cancer Hospital, Nantong City, Jiangsu Province, China
| |
Collapse
|