1
|
Ounadjela JR, Zhang K, Kobayashi-Kirschvink KJ, Jin K, J C Russell A, Lackner AI, Callahan C, Viggiani F, Dey KK, Jagadeesh K, Maxian T, Prandstetter AM, Nadaf N, Gong Q, Raichur R, Zvezdov ML, Hui M, Simpson M, Liu X, Min W, Knöfler M, Chen F, Haider S, Shu J. Spatial multiomic landscape of the human placenta at molecular resolution. Nat Med 2024; 30:3495-3508. [PMID: 39567716 DOI: 10.1038/s41591-024-03073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 11/22/2024]
Abstract
Successful pregnancy relies directly on the placenta's complex, dynamic, gene-regulatory networks. Disruption of this vast collection of intercellular and intracellular programs leads to pregnancy complications and developmental defects. In the present study, we generated a comprehensive, spatially resolved, multimodal cell census elucidating the molecular architecture of the first trimester human placenta. We utilized paired single-nucleus (sn)ATAC (assay for transposase accessible chromatin) sequencing and RNA sequencing (RNA-seq), spatial snATAC-seq and RNA-seq, and in situ sequencing and hybridization mapping of transcriptomes at molecular resolution to spatially reconstruct the joint epigenomic and transcriptomic regulatory landscape. Paired analyses unraveled intricate tumor-like gene expression and transcription factor motif programs potentially sustaining the placenta in a hostile uterine environment; further investigation of gene-linked cis-regulatory elements revealed heightened regulatory complexity that may govern trophoblast differentiation and placental disease risk. Complementary spatial mapping techniques decoded these programs within the placental villous core and extravillous trophoblast cell column architecture while simultaneously revealing niche-establishing transcriptional elements and cell-cell communication. Finally, we computationally imputed genome-wide, multiomic single-cell profiles and spatially characterized the placental chromatin accessibility landscape. This spatially resolved, single-cell multiomic framework of the first trimester human placenta serves as a blueprint for future studies on early placental development and pregnancy.
Collapse
Affiliation(s)
- Johain R Ounadjela
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Jin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J C Russell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Viggiani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kushal K Dey
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karthik Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Naeem Nadaf
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiyu Gong
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth Raichur
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan L Zvezdov
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mingyang Hui
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattew Simpson
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinwen Liu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Chen L, Chen WD, Xu YX, Ren YY, Zheng C, Lin YY, Zhou JL. Strategies for enhancing non-small cell lung cancer treatment: Integrating Chinese herbal medicines with epidermal growth factor receptor-tyrosine kinase inhibitors therapy. Eur J Pharmacol 2024; 980:176871. [PMID: 39117263 DOI: 10.1016/j.ejphar.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) poses a global health threat, and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib, afatinib, and osimertinib have achieved significant success in clinical treatment. However, the emergence of resistance limits the long-term efficacy of these treatments, necessitating urgent exploration of novel EGFR-TKIs. This review provides an in-depth summary and exploration of the resistance mechanisms associated with EGFR-TKIs, with a specific focus on representative drugs like gefitinib, afatinib, and osimertinib. Additionally, the review introduces a therapeutic strategy involving the combination of Chinese herbal medicines (CHMs) and chemotherapy drugs, highlighting the potential role of CHMs in overcoming NSCLC resistance. Through systematic analysis, we elucidate the primary resistance mechanisms of EGFR-TKIs in NSCLC treatment, emphasizing CHMs as potential treatment medicines and providing a fresh perspective for the development of next-generation EGFR-TKIs. This comprehensive review aims to guide the application of CHMs in combination therapy for NSCLC management, fostering the development of more effective and comprehensive treatment modalities to ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Da Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou, 310052, China.
| | - Yuan-Yuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Miki R, Matsuo S, Ushida T, Tano S, Imai K, Nawa A, Kajiyama H, Kotani T. TJP1 suppresses trophoblast cell invasion by expressing E2F8 in the human placenta. Mol Cell Endocrinol 2024; 591:112277. [PMID: 38795825 DOI: 10.1016/j.mce.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Adequate extravillous trophoblast (EVT) invasion into the maternal decidua is important for human placental development. We identified that E2F transcription factor 8 (E2F8) suppresses EVT invasion, and that tight junction protein-1 (TJP1) is a potential downstream target gene of E2F8. We investigated the role of TJP1 in the human placenta and regulation of TJP1 expression by E2F8. TJP1 expression decreased in E2F8 knockdown HTR-8/SVneo cells. TJP1 and E2F8 were co-expressed in villi in the first-trimester placenta and in EVTs and villi in the third-trimester placenta. TJP1 was significantly increased in the pre-eclamptic compared with control placenta. TJP1 knockdown increased the invasion of HTR-8/SVneo cells, while TJP1 overexpression inhibited cell invasion. Halo-E2F8 overexpression significantly increased TJP1 expression and TJP1 transcription compared with control placenta. Our findings suggest that E2F8 promotes TJP1 transcription, and that TJP1 expression by E2F8 inhibits EVT invasion. TJP1 and E2F8 may be related to pre-eclampsia pathogenesis.
Collapse
Affiliation(s)
- Rika Miki
- Laboratory of Bell Research Center Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan; Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Akihiro Nawa
- Laboratory of Bell Research Center Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan; Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
4
|
Mitchell MI, Khalil M, Ben-Dov IZ, Alverez-Perez J, Illsley NP, Zamudio S, Al-Khan A, Loudig O. Customizing EV-CATCHER to Purify Placental Extracellular Vesicles from Maternal Plasma to Detect Placental Pathologies. Int J Mol Sci 2024; 25:5102. [PMID: 38791142 PMCID: PMC11121217 DOI: 10.3390/ijms25105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Placenta Accreta Spectrum (PAS) is a life-threatening condition in which placental trophoblastic cells abnormally invade the uterus, often up to the uterine serosa and, in extreme cases, tissues beyond the uterine wall. Currently, there is no clinical assay for the non-invasive detection of PAS, and only ultrasound and MRI can be used for its diagnosis. Considering the subjectivity of visual assessment, the detection of PAS necessitates a high degree of expertise and, in some instances, can lead to its misdiagnosis. In clinical practice, up to 50% of pregnancies with PAS remain undiagnosed until delivery, and it is associated with increased risk of morbidity/mortality. Although many studies have evaluated the potential of fetal biomarkers circulating in maternal blood, very few studies have evaluated the potential of circulating placental extracellular vesicles (EVs) and their miRNA contents for molecular detection of PAS. Thus, to purify placental EVs from maternal blood, we customized our robust ultra-sensitive immuno-purification assay, termed EV-CATCHER, with a monoclonal antibody targeting the membrane Placental Alkaline Phosphatase (PLAP) protein, which is unique to the placenta and present on the surface of placental EVs. Then, as a pilot evaluation, we compared the miRNA expression profiles of placental EVs purified from the maternal plasma of women diagnosed with placenta previa (controls, n = 16); placenta lying low in uterus but not invasive) to those of placental EVs purified from the plasma of women with placenta percreta (cases, n = 16), PAS with the highest level of invasiveness. Our analyses reveal that miRNA profiling of PLAP+ EVs purified from maternal plasma identified 40 differentially expressed miRNAs when comparing these two placental pathologies. Preliminary miRNA pathway enrichment and gene ontology analysis of the top 14 upregulated and top nine downregulated miRNAs in PLAP+ EVs, purified from the plasma of women diagnosed with placenta percreta versus those diagnosed with placenta previa, suggests a potential role in control of cellular invasion and motility that will require further investigation.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| | - Marwa Khalil
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Jesus Alverez-Perez
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Nicholas P. Illsley
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Stacy Zamudio
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Abdulla Al-Khan
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| |
Collapse
|
5
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Gao C, Li J, Zeng F, Wang L, Chen K, Chen D, Hong J, Qu C. MCM6 promotes intrahepatic cholangiocarcinoma progression by upregulating E2F1 and enhancing epithelial-mesenchymal transition. Carcinogenesis 2023; 44:279-290. [PMID: 37185675 DOI: 10.1093/carcin/bgad023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Minichromosome maintenance complex component 6 (MCM6), a member of the MCM family, plays a pivotal role in DNA replication initiation and genome duplication of proliferating cells. MCM6 is upregulated in multiple malignancies and is considered a novel diagnostic biomarker. However, the functional contributions and prognostic value of MCM6 in intrahepatic cholangiocarcinoma (ICC) remain unexplored. In this study, we investigated the molecular function of MCM6 in ICC. Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO, GSE107943) indicated an upregulation of MCM6 in tumor tissues. Immunohistochemical analysis performed on 115 cases of ICC samples confirmed the upregulation of MCM6 and further suggested that a high level of MCM6 expression predicted shorter overall and disease-free survival in ICC patients. Functional studies suggested that MCM6 knockdown significantly suppressed cell viability, blocked cell cycle progression and inhibited metastasis, while the enhancement of MCM6 expression promoted the proliferation and migration of ICC cells both in vitro and in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) suggested that the epithelial-mesenchymal transition (EMT) and E2F1-correlated genes were enriched in ICC tissues with high MCM6 expression. Further verification indicated that MCM6 promoted the EMT of ICC cells via upregulating E2F1. In addition, E2F1 knockdown partially blocked the pro-malignant effects of MCM6 overexpression. In summary, MCM6 was found to be a novel prognostic and predictive marker for ICC. MCM6 promoted ICC progression via activation of E2F1-mediated EMT.
Collapse
Affiliation(s)
- Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jing Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Fuling Zeng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Lijuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Kaiyun Chen
- Department of General Surgery, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510632, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
7
|
Zeng Y, Du W, Huang Z, Wu S, Ou X, Zhang J, Peng C, Sun X, Tang H. Hsa_circ_0060467 promotes breast cancer liver metastasis by complexing with eIF4A3 and sponging miR-1205. Cell Death Discov 2023; 9:153. [PMID: 37160894 PMCID: PMC10169853 DOI: 10.1038/s41420-023-01448-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
Breast cancer (BC) is the most common cancer and the top cause of female mortality worldwide. The prognosis for patients with breast cancer liver metastasis (BCLM) remains poor. Emerging studies suggest that circular RNAs (circRNAs) are associated with the progression of BC. Exploration of circRNAs presents a promising avenue for identifying metastasis-targeting agents and improving the prognosis of patients with BCLM. Microarray and bioinformatic analyses were used to analyze differentially expressed circRNAs between three pairs of BCLM and primary BC. The roles of hsa_circ_0060467 (circMYBL2) and its target gene E2F1 in BC cells were explored by multiple functional experiments. And xenograft mouse models and hepatic metastases of BC hemi-spleen models were used to illustrate the function of circMYBL2 in vivo. The intrinsic molecular mechanism involving circMYBL2 was confirmed by bioinformatics analyses, RIP assays, CHIRP assays, luciferase reporter assays, and rescue experiments. CircMYBL2 was overexpressed in BCLM tissues and BC cells. Functionally, circMYBL2 can facilitate the proliferation and liver metastasis of BC. Mechanistically, circMYBL2 upregulated the transcription factor E2F1 by sponging miR-1205 and complexing with eukaryotic translation initiation factor 4A3 (eIF4A3) and then facilitated the epithelial-mesenchymal transition (EMT) process in BC cells. Our findings showed that circMYBL2 promoted the tumorigenesis and aggressiveness of BC through the circMYBL2/miR-1205/E2F1 and circMYBL2/eIF4A3/E2F1 axes, which may provide a novel targeted therapy for patients with BCLM.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wei Du
- Department of Pathology, the First People's Hospital of Changde City, Changde, Hunan, China
| | - Zhongying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xiaoqing Sun
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|