1
|
Qi Q, Li Y, Chen Z, Luo Z, Zhou T, Zhou J, Zhang Y, Chen S, Wang L. Update on the pathogenesis of endometriosis-related infertility based on contemporary evidence. Front Endocrinol (Lausanne) 2025; 16:1558271. [PMID: 40130159 PMCID: PMC11930837 DOI: 10.3389/fendo.2025.1558271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Endometriosis, the most prevalent cause of infertility, is associated with anatomical distortion leading to adhesions and fibrosis, as well as endocrine abnormalities and immune disorders. This review discusses the mechanisms underlying endometriosis-related infertility. Firstly, alterations in the hypothalamic-pituitary-ovarian axis lead to the secretion of gonadotropins and steroid hormones, with adverse effects on ovulation and implantation, leading to fertility decline. Secondly, dysregulation of the hypothalamic-pituitary-adrenal axis induces elevated serum cortisol and prolactin levels in patients with endometriosis, accounting for its regulation of stress, depression, and anxiety. Abnormal interactions between endometrial cells and the immune system change the local microenvironment, resulting in epithelial-mesenchymal transition and inflammation. Activated epithelial cells, stromal cells, and immunocytes produce various chemokines, cytokines, or autoantibodies, creating an unfavorable environment for embryo implantation. These findings suggest that alterations in the immune spectrum play a crucial role in endometriosis-related infertility. Thirdly, oxidative stress has adverse effects on the ovarian reserve and subsequent embryonic development, predicting another promising strategy for endometriosis-related infertility. An unbalanced redox state, including impaired mitochondrial function, dysregulated lipid metabolism, and iron-induced oxidative stress, generates a pro-oxidative microenvironment, which negatively impacts oocyte quality and sperm and embryo viability. Thus, an updated understanding of the mechanisms involved in this disease will help to develop effective strategies to manage endometriosis-related infertility.
Collapse
Affiliation(s)
- Qing Qi
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, Hubei, China
| | - Yaonan Li
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, Hubei, China
| | - Ziqin Chen
- College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhihui Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yanlin Zhang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Song Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ling Wang
- Department of Obstetrics and Reproductive Immunology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Center of Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Jimenez N, Norton T, Diadala G, Bell E, Valenti M, Farland LV, Mahnert N, Herbst-Kralovetz MM. Vaginal and rectal microbiome contribute to genital inflammation in chronic pelvic pain. BMC Med 2024; 22:283. [PMID: 38972981 PMCID: PMC11229265 DOI: 10.1186/s12916-024-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Chronic pelvic pain (CPP) is a multifactorial syndrome that can substantially affect a patient's quality of life. Endometriosis is one cause of CPP, and alterations of the immune and microbiome profiles have been observed in patients with endometriosis. The objective of this pilot study was to investigate differences in the vaginal and gastrointestinal microbiomes and cervicovaginal immune microenvironment in patients with CPP and endometriosis diagnosis compared to those with CPP without endometriosis and no CPP. METHODS Vaginal swabs, rectal swabs, and cervicovaginal lavages (CVL) were collected among individuals undergoing gynecologic laparoscopy. Participants were grouped based on patients seeking care for chronic pain and/or pathology results: CPP and endometriosis (CPP-Endo) (n = 35), CPP without endometriosis (n = 23), or patients without CPP or endometriosis (controls) (n = 15). Sensitivity analyses were performed on CPP with endometriosis location, stage, and co-occurring gynecologic conditions (abnormal uterine bleeding, fibroids). 16S rRNA sequencing was performed to profile the microbiome, and a panel of soluble immune mediators was quantified using a multiplex assay. Statistical analysis was conducted with SAS, R, MicrobiomeAnalyst, MetaboAnalyst, and QIIME 2. RESULTS Significant differences were observed between participants with CPP alone, CPP-Endo, and surgical controls for body mass index, ethnicity, diagnosis of ovarian cysts, and diagnosis of fibroids. In rectal microbiome analysis, both CPP alone and CPP-Endo exhibited lower alpha diversity than controls, and both CPP groups revealed enrichment of irritable bowel syndrome-associated bacteria. CPP-Endo exhibited an increased abundance of vaginal Streptococcus anginosus and rectal Ruminococcus. Patients with CPP and endometrioma (s) demonstrated increased vaginal Streptococcus, Lactobacillus, and Prevotella compared to other endometriosis sites. Further, abnormal uterine bleeding was associated with an increased abundance of bacterial vaginosis-associated bacteria. Immunoproteomic profiles were distinctly clustered by CPP alone and CPP-Endo compared to controls. CPP-Endo was enriched in TNF⍺, MDC, and IL-1⍺. CONCLUSIONS Vaginal and rectal microbiomes were observed to differ between patients with CPP alone and CPP with endometriosis, which may be useful in personalized treatment for individuals with CPP and endometriosis from those with other causes of CPP. Further investigation is warranted in patients with additional co-occurring conditions, such as AUB/fibroids, which add additional complexity to these conditions and reveal the enrichment of distinct pathogenic bacteria in both mucosal sites. This study provides foundational microbiome-immunoproteomic knowledge related to chronic pelvic pain, endometriosis, and co-occurring gynecologic conditions that can help improve the treatment of patients seeking care for pain.
Collapse
Affiliation(s)
- Nicole Jimenez
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Taylor Norton
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Obstetrics and Gynecology, Banner University Medical Center Phoenix, Phoenix, AZ, USA
| | - Gurbeen Diadala
- Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Building ABC-1, Lab 331E, 425 N. 5 St, Phoenix, AZ, 85004, USA
| | - Emerald Bell
- Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Building ABC-1, Lab 331E, 425 N. 5 St, Phoenix, AZ, 85004, USA
- University of Arizona College of Nursing, Tucson, AZ, USA
| | - Michelle Valenti
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Leslie V Farland
- UA Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Obstetrics and Gynecology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
| | - Nichole Mahnert
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Obstetrics and Gynecology, Banner University Medical Center Phoenix, Phoenix, AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Building ABC-1, Lab 331E, 425 N. 5 St, Phoenix, AZ, 85004, USA.
- UA Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Cheng W, Shan J, Ding J, Liu Y, Sun S, Xu L, Yu C. Therapeutic effects of Huayu Jiedu formula on endometriosis via downregulating GATA 6 expression. Heliyon 2024; 10:e23149. [PMID: 38187253 PMCID: PMC10767382 DOI: 10.1016/j.heliyon.2023.e23149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Background Endometriosis (EMs) is a common chronic inflammatory disease which is characterized by multiple clinical symptoms and high recurrence rate due to the absence of effective therapies. Huayu Jiedu Formula (HYJDF), is a traditional Chinese medicine prescription with five major herbs. It has been used as traditional medicine to treat EMs for more than twenty years and exerted a good therapeutic effect. However, the underlying mechanism is unclear. Here we aim to observe the effects of HYJDF on EMs and investigate the therapeutic mechanism. Methods The extract components of HYJDF were identified and quantified by an UHPLC-QE-MS method. Network pharmacology was used to obtain the core targets of HYJDF for the treatment of EMs and the specific biologic processes involved. A total of 68 EMs cases were randomly divided into control (gestrinone) and observation (HYJDF) groups. The overall effectiveness, pain scores, cyst-size changes, serum CA125 levels, quality-of-life scores, safety, and adverse events were evaluated before and after treatment. For the mechanism research, DNA methylation-chip analysis was performed to determine the differential genes. EMs mice models and human ectopic stromal cells (ESCs) were treated with HYJDF and its pharmaceutical serum, respectively. The ectopic foci was measured via H&E staining while the expressions of the target genes were verified by real-time PCR and Western blot analysis. The inflammatory cytokine levels in the peritoneal fluid of mice were detected by ELISA. The proliferative potential of cells was analyzed by MTS whereas the apoptosis and cell cycle were determined through flow analysis. Results The total number of components detected in positive and negative ion modes was 839 and 597, respectively. Network pharmacology suggested that HYJDF treated EMs through DNA methylation. We found that HYJDF and gestrinone exerted good therapeutic effect with no obvious difference, but the HYJDF treatment group had fewer side effects. GATA 6, which was hypomethylated and abundant in endometriotic cells, potently induced inflammatory response. This finding indicated the important role of GATA 6 in EMs development. Moreover, HYJDF ameliorated inflammatory response (i.e., reduced the levels of IL-1β and PGE2 in peritoneal fluid), suppressed ESCs proliferation, and increased cell apoptosis by down-regulating GATA 6 expression. Conclusion We demonstrated that HYJDF has anti-inflammation activity and increased cell apoptosis through the reduction of GATA 6 expression in ectopic tissues, which showed good therapeutic effect without any obvious side effects. These findings suggest that HYJDF may be a new and efficient traditional Chinese medicine for the treatment of EMs.
Collapse
Affiliation(s)
- Wen Cheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Jing Shan
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yiqun Liu
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Shuai Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Lianwei Xu
- Department of Gynecology of Traditional Chinese Medicine, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Quan Q, Ma X, Li M, Li X, Yuan H. Ginsenoside Rg1 promotes β‑amyloid peptide degradation through inhibition of the ERK/PPARγ phosphorylation pathway in an Alzheimer's disease neuronal model. Exp Ther Med 2024; 27:31. [PMID: 38125359 PMCID: PMC10731411 DOI: 10.3892/etm.2023.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
β-Amyloid peptide (Aβ) deposition in the brain is an important pathological change in Alzheimer's disease (AD). Insulin-degrading enzyme (IDE), which is regulated transcriptionally by peroxisome proliferator-activated receptor γ (PPARγ), is able to proteolyze Aβ. One of the members of the MAPK family, ERK, is able to mediate the phosphorylation of PPARγ at Ser112, thereby inhibiting its transcriptional activity. Ginsenoside Rg1 is one of the active ingredients in the natural medicine ginseng and has inhibitory effects on Aβ production. The present study was designed to investigate whether ginsenoside Rg1 is able to affect the regulation of PPARγ based on the expression of its target gene, IDE, and whether it is able to promote Aβ degradation via inhibition of the ERK/PPARγ phosphorylation pathway. In the present study, primary cultured rat hippocampal neurons were treated with Aβ1-42, ginsenoside Rg1 and the ERK inhibitor PD98059, and subsequently TUNEL staining was used to detect the level of neuronal apoptosis. ELISA was subsequently employed to detect the intra- and extracellular Aβ1-42 levels, immunofluorescence staining and western blotting were used to detect the translocation of ERK from the cytoplasm to the nucleus, immunofluorescence double staining was used to detect the co-expression of ERK and PPARγ, and finally, western blotting was used to detect the phosphorylation of PPARγ at Ser112 and IDE expression. The results demonstrated that ginsenoside Rg1 or PD98059 were able to inhibit primary cultured hippocampal neuron apoptosis induced by Aβ1-42 treatment, reduce the levels of intra- and extraneuronal Aβ1-42 and inhibit the translocation of ERK from the cytoplasm to the nucleus. Furthermore, administration of ginsenoside Rg1 or PD98059 resulted in attenuated co-expression of ERK and PPARγ, inhibition of phosphorylation of PPARγ at Ser112 mediated by ERK and an increase in IDE expression. In addition, the effects when PD98059 to inhibit ERK followed by treatment with ginsenoside Rg1 were found to be more pronounced than those when using PD98059 alone. In conclusion, ginsenoside Rg1 was demonstrated to exert neuroprotective effects on AD via inhibition of the ERK/PPARγ phosphorylation pathway, which led to an increase in IDE expression, the promotion of Aβ degradation and the decrease of neuronal apoptosis. These results could provide a theoretical basis for the clinical application of ginsenoside Rg1 in AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinxin Ma
- Department of Psychology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haifeng Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
5
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Tian M, Yang J, Yan X, Cao Y, Liu Y, Lei Y, Lv H. Knockdown of lncRNA TUG1 alleviates diabetic retinal vascular dysfunction through regulating miR-524-5p/FGFR2. Bioengineered 2022; 13:12661-12672. [PMID: 35599572 PMCID: PMC9275859 DOI: 10.1080/21655979.2022.2075306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) have been shown to play critical roles in the development of diabetic retinopathy (DR), which is often regarded as the most frequent cause of visual loss in the world. This study investigated the effect and mechanism of lncRNA taurine-upregulated gene 1 (TUG1) in DR. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that TUG1 was upregulated in streptozotocin (STZ)-induced rat model of DR and human retinal microvascular endothelial cells (hRMECs) incubated with high glucose (HG). TUG1 suppression decreased the proliferation, migration, and angiogenesis of HG-induced hRMECs. TUG1 sponges miR-524-5p, which is downregulated in hyperglycemia. Additionally, the fibroblast growth factor receptor 2 (FGFR2) was verified as a miR-524-5p target gene and was overexpressed in HG-treated hRMECs. More notably, overexpression of FGFR2 has been shown to significantly reduce the impact of miR-524-5p overexpression. Additionally, TUG1 silencing ameliorates diabetes mellitus-induced retinal vascular impairment in vivo. Taken together, suppressing TUG1 impairs vascular function in diabetic retinas via controlling miR-524-5p and FGFR2, suggesting a possible therapy method for DR.
Collapse
Affiliation(s)
- Min Tian
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Yang
- Department of Neurosurgery, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Yan
- Department of Neonatology, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Cao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuting Liu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingqing Lei
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Li M, Jiang H, Chen S, Ma Y. GATA binding protein 1 recruits histone deacetylase 2 to the promoter region of nuclear receptor binding protein 2 to affect the tumor microenvironment and malignancy of thyroid carcinoma. Bioengineered 2022; 13:11320-11341. [PMID: 35491849 PMCID: PMC9278442 DOI: 10.1080/21655979.2022.2068921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) and activated angiogenesis in thyroid carcinoma (TC) are critical for tumor growth and metastasis. Nuclear receptor binding protein 2 (NRBP2) has been suggested as a tumor suppressor. This study examines the function of NRBP2 in the progression of TC and the regulatory mechanism. By analyzing bioinformatic tools including GSE165724 dataset and the Cancer Genome Atlas system, we predicted NRBP2 as a poorly expressed gene in TC. Decreased NRBP2 expression was detected in TC tumor tissues and cells. Poor expression of NRBP2 was linked to unfavorable prognosis of patients. GATA binding protein 1 (GATA1) was found as a negative regulator of NRBP2. It recruited histone deacetylase2 (HDAC2) to the NRBP2 promoter to trigger histone deacetylation. NRBP2 overexpression suppressed growth of TC cells, and it reduced expression of TME markers, M2 polarization of macrophages, and angiogenesis in TC. Similar results were reproduced in vivo in nude mice. However, the anti-oncogenic roles of NRBP2 were blocked after further overexpression of GATA1 or HDAC2. In summary, this study demonstrates that GATA1 recruits HDAC2 to the NRBP2 promoter and enhances the TME and angiogenesis in TC cells.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Shengjiang Chen
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Yujin Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| |
Collapse
|