1
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2025; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
2
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. A Comprehensive Review of the Contribution of Mitochondrial DNA Mutations and Dysfunction in Polycystic Ovary Syndrome, Supported by Secondary Database Analysis. Int J Mol Sci 2025; 26:1172. [PMID: 39940939 PMCID: PMC11818232 DOI: 10.3390/ijms26031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age characterized by a spectrum of clinical, metabolic, reproductive, and psychological abnormalities. This syndrome is associated with significant long-term health risks, necessitating elucidation of its pathophysiology, early diagnosis, and comprehensive management strategies. Several contributory factors in PCOS, including androgen excess and insulin resistance, collectively enhance oxidative stress, which subsequently leads to mitochondrial dysfunction. However, the precise mechanisms through which oxidative stress induces mitochondrial dysfunction remain incompletely understood. Comprehensive searches of electronic databases were conducted to identify relevant studies published up to 30 September 2024. Mitochondria, the primary sites of reactive oxygen species (ROS) generation, play critical roles in energy metabolism and cellular homeostasis. Oxidative stress can inflict damage on components, including lipids, proteins, and DNA. Damage to mitochondrial DNA (mtDNA), which lacks efficient repair mechanisms, may result in mutations that impair mitochondrial function. Dysfunctional mitochondrial activity further amplifies ROS production, thereby perpetuating oxidative stress. These disruptions are implicated in the complications associated with the syndrome. Advances in genetic analysis technologies, including next-generation sequencing, have identified point mutations and deletions in mtDNA, drawing significant attention to their association with oxidative stress. Emerging data from mtDNA mutation analyses challenge conventional paradigms and provide new insights into the role of oxidative stress in mitochondrial dysfunction. We are rethinking the pathogenesis of PCOS based on these database analyses. In conclusion, this review explores the intricate relationship between oxidative stress, mtDNA mutations, and mitochondrial dysfunction, offers an updated perspective on the pathophysiology of PCOS, and outlines directions for future research.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Medicine, Kei Oushin Clinic, 5-2-6 Naruo-cho, Nishinomiya 663-8184, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara 630-8581, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| |
Collapse
|
3
|
Wang L, Gao J, Ma J, Sun J, Wang Y, Luo J, Wang Z, Wang H, Li J, Yang D, Wang J, Hu R. Effects of hyperhomocysteinemia on follicular development and oocytes quality. iScience 2024; 27:111241. [PMID: 39563894 PMCID: PMC11574796 DOI: 10.1016/j.isci.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
In patients with polycystic ovary syndrome (PCOS), the concentration of homocysteine (Hcy) in follicular fluid is inversely correlated with oocyte and embryo quality. Nevertheless, other metabolic abnormalities associated with PCOS may also impact oocyte and early embryo quality. Therefore, it remains uncertain whether reproductive function is affected in patients without PCOS with hyperhomocysteinemia (HHcy). Here, we observed reduced fertility, increased ovarian atretic follicles, and reduced oocyte maturation rates in HHcy mice. Proteomic analyses revealed that HHcy causes mitochondrial dysfunction and reduced expression of zona pellucida proteins (ZP1, ZP2, and ZP3) in oocytes. Transmission electron microscopy confirmed abnormal formation of the zona pellucida and microvilli in oocytes from HHcy mice. Additionally, in vitro fertilization (IVF) demonstrated a reduction in the rate of 2-cell embryo formation in HHcy mice. These findings reveal that HHcy reduces female reproductive longevity by affecting follicular development and oocyte quality.
Collapse
Affiliation(s)
- Lu Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinmei Gao
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jie Ma
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Sun
- Ningxia Medical University, Ningxia, China
| | - Yajie Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jia Luo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia, China
| | | | - Hui Wang
- Reproductive Medicine Center, Yinchuan Women and Children Healthcare Hospital, Ningxia, China
| | - Jialing Li
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
| | - Danyu Yang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinfang Wang
- Department of Obstetrician, General Hospital of Ningxia Medical University, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia, China
| |
Collapse
|
4
|
Zhang Y, Sheng Y, Yang Q, Zeng Y. Homocysteine in androgenetic alopecia: A case control study and observational experiments on mice. J Cosmet Dermatol 2024; 23:3608-3615. [PMID: 38932477 DOI: 10.1111/jocd.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the relationship between homocysteine (HCY) and androgenetic alopecia (AGA). METHODS A case control study and two observational experiments on mice were conducted. In the first part, a total of 528 Chinese AGA patients and 500 age-matched healthy controls were included. Serum HCY levels of AGA and controls were compared. In the second part, eight mice were divided into two groups. Both groups of mice had their hair removed. AGA group received a DHT injection, and the other as control group. HCY levels in hair follicles (HFs) were detected by ELISA and compared. In the third part, twelve mice were divided into three groups and fed with different concentrations of methionine. After 4 weeks, serum HCY levels, parameters related to hair growth through observation and HE staining, and expression of immunohistochemistry (IHC) hair-growth-related markers Ki67, VEGF, IGF-1, Krt27, FGF9, and TGF-β1 were compared among the three groups. RESULTS In the first part, HCY levels were higher in AGA than the controls of both genders. However, there was no difference in HCY levels between groups with varying severity. Rates of hyperhomocysteinemia was higher in AGA patients than the controls. Logistic regression analysis showed serum HCY levels was positively correlated with the incidence of AGA. In the second part, HCY of the HFs in the AGA group was significantly higher than that in the control group. The third part showed that the increase in serum HCY levels inhibited the growth of mice hair, with the less expressed stimulative markers Ki67, VEGF, IGF-1, Krt27, and FGF9, while there was no difference in the expression of inhibitory markers TGF-β1. CONCLUSION There is a potential relationship between HCY and AGA. HCY had an inhibitory effect on hair growth. Further studies are necessary to explore the specific mechanism.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Youyu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Shao F, Xu S, Zhao H, Zhang F, Wang X, Wang H. Causal relationship between fertility nutrients supplementation and PCOS risk: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1420004. [PMID: 39381438 PMCID: PMC11458446 DOI: 10.3389/fendo.2024.1420004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is mainly ameliorated through drugs or lifestyle changes, with limited treatment options. To date, numerous researchers have found that fertility nutrient supplements may benefit female reproductive health, but their direct impact on polycystic ovary syndrome risk remains unclear. Methods Our research employs Mendelian Randomization to assess how fertility nutrients affect PCOS risk. Initially, we reviewed 49 nutrients and focused on 10: omega-3 fatty acids, calcium, dehydroepiandrosterone, vitamin D, betaine, D-Inositol, berberine, curcumin, epigallocatechin gallate, and metformin. Using methodologies of Inverse Variance Weighting and Mendelian Randomization-Egger regression, we examined their potential causal relationships with PCOS risk. Results Our findings indicate omega-3 fatty acids reduced PCOS risk (OR=0.73, 95% CI: 0.57-0.94, P=0.016), whereas betaine increased it (OR=2.60, 95% CI: 1.09-6.17, P=0.031). No definitive causal relations were observed for calcium, dehydroepiandrosterone, vitamin D, D-Inositol, and metformin (P>0.05). Drug target Mendelian Randomization analysis suggested that increased expression of the berberine target gene BIRC5 in various tissues may raise PCOS risk (OR: 3.00-4.88; P: 0.014-0.018), while elevated expressions of curcumin target gene CBR1 in Stomach and epigallocatechin gallate target gene AHR in Adrenal Gland were associated with reduced PCOS risk (OR=0.48, P=0.048; OR=0.02, P=0.018, respectively). Conclusions Our research reveals that specific fertility nutrients supplementation, such as omega-3 fatty acids, berberine, and curcumin, may reduce the risk of PCOS by improving metabolic and reproductive abnormalities associated with it.
Collapse
Affiliation(s)
- Fang Shao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shijia Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Haiyang Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- Innovative Chinese Medicine Research Institute, Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Zhao J, Li X, Chen Q. Effects of MTHFR C677T polymorphism on homocysteine and vitamin D in women with polycystic ovary syndrome. Gene 2024; 919:148504. [PMID: 38670392 DOI: 10.1016/j.gene.2024.148504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES To evaluate the correlation between serum vitamin D, homocysteine and the methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism in women with polycystic ovary syndrome (PCOS). Study design We retrospectively compared the serum homocysteine and vitamin D levels and the MTHFR C677T polymorphism in 104 PCOS patients and 104 controls. Parameters related to PCOS were statistically analysed. RESULTS Comparative analysis revealed that women with PCOS had significantly greater serum homocysteine levels (P = 0.002) and lower vitamin D concentrations (P = 0.040) than controls. The distribution frequency of the MTHFR C677T genotype did not significantly differ between the PCOS group and the control group. (P > 0.05). In the PCOS group, the serum level of homocysteine in the TT group was significantly greater than that in the CT (P = 0.003) and CC (P = 0.002) groups and the level of vitamin D in the TT group was significantly less than that in the CC (P < 0.001) and CT (P = 0.172) groups. The results were similar when the PCOS and control groups were divided according to whether they had insulin resistance. Vitamin D levels were significantly negatively correlated with homocysteine levels in all PCOS patients (r = -0.281, P = 0.004), similarly, vitamin D levels were negatively correlated with homocysteine levels in the CC, CT and TT of PCOS patients. According to multivariate analysis, vitamin D concentration was an independent risk factor for hyperhomocysteinaemia (adjusted OR 1.372, 95 % CI: 1.100-1.712). CONCLUSIONS No significant differences were found in the distributions of MTHFR C677T genotypes between the PCOS and control groups but these genotypes affected the patients' serum homocysteine and vitamin D concentrations. Women with the TT genotype have significantly lower vitamin D levels and higher homocysteine levels than women with the CC and CT genotypes. However, because of the limitations of this investigation, large-sample, high-quality prospective studies are needed to further verify these results in the future.
Collapse
Affiliation(s)
- Jinyan Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xianghong Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qing Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
7
|
Su N, Li J, Xia Y, Huang C, Chen L. Non-causal relationship of polycystic ovarian syndrome with homocysteine and B vitamins: evidence from a two-sample Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1393847. [PMID: 38841299 PMCID: PMC11150916 DOI: 10.3389/fendo.2024.1393847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Previous observational studies have identified a correlation between elevated plasma homocysteine (Hcy) levels and polycystic ovary syndrome (PCOS). This study aimed to determine whether a causal relationship exists between Hcy and PCOS at the genetic level. Methods A two-sample Mendelian Randomization (TSMR) study was implemented to assess the genetic impact of plasma levels of Hcy, folate, vitamin B12, and vitamin B6 on PCOS in individuals of European ancestry. Independent single nucleotide polymorphisms (SNPs) associated with Hcy (n=12), folate (n=2), vitamin B12 (n=10), and vitamin B6 (n=1) at genome-wide significance levels (P<5×10-8) were selected as instrumental variables (IVs). Data concerning PCOS were obtained from the Apollo database. The primary method of causal estimation was inverse variance weighting (IVW), complemented by sensitivity analyses to validate the results. Results The study found no genetic evidence to suggest a causal association between plasma levels of Hcy, folate, vitamin B12, vitamin B6, and PCOS. The effect sizes, determined through random-effect IVW, were as follows: Hcy per standard deviation increase, OR = 1.117, 95%CI: (0.842, 1.483), P = 0.442; folate per standard deviation increase, OR = 1.008, CI: (0.546, 1.860), P = 0.981; vitamin B12 per standard deviation increase, OR = 0.978, CI: (0.808, 1.185), P = 0.823; and vitamin B6 per standard deviation increase, OR = 0.967, CI: (0.925, 1.012), P = 0.145. The fixed-effect IVW results for each nutrient exposure and PCOS were consistent with the random-effect IVW findings, with additional sensitivity analyses reinforcing these outcomes. Conclusion Our findings indicate no causal link between Hcy, folate, vitamin B12, vitamin B6 levels, and PCOS.
Collapse
Affiliation(s)
- Nianjun Su
- Department of Reproductive Health and Infertility, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Jinsheng Li
- South China University of Technology School of Medicine, Guangzhou, China
| | - Yubing Xia
- Wurang Town Health Center, Zhaoqing, China
| | - Cuiyu Huang
- Department of Reproductive Health and Infertility, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Lei Chen
- Department of Obstetrics and Gynecology, The Sixth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Zhao Y, Zhao X, Jiang T, Xi H, Jiang Y, Feng X. A Retrospective Review on Dysregulated Autophagy in Polycystic Ovary Syndrome: From Pathogenesis to Therapeutic Strategies. Horm Metab Res 2024. [PMID: 38565184 DOI: 10.1055/a-2280-7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The main purpose of this article is to explore the relationship between autophagy and the pathological mechanism of PCOS, and to find potential therapeutic methods that can alleviate the pathological mechanism of PCOS by targeting autophagy. Relevant literatures were searched in the following databases, including: PubMed, MEDLINE, Web of Science, Scopus. The search terms were "autophagy", "PCOS", "polycystic ovary syndrome", "ovulation", "hyperandrogenemia", "insulin resistance", "inflammatory state", "circadian rhythm" and "treatment", which were combined according to the retrieval methods of different databases. Through analysis, we uncovered that abnormal levels of autophagy were closely related to abnormal ovulation, insulin resistance, hyperandrogenemia, and low-grade inflammation in patients with PCOS. Lifestyle intervention, melatonin, vitamin D, and probiotics, etc. were able to improve the pathological mechanism of PCOS via targeting autophagy. In conclusion, autophagy disorder is a key pathological mechanism in PCOS and is also a potential target for drug development and design.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyue Jiang
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyan Xi
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Zhang K, Chen J, Chen B, Han Y, Cai T, Zhao J, Gu Z, Gao M, Hou Z, Yu X, Gu F, Gao Y, Hu R, Xie J, Liu T, Cui D, Li B. Association between dietary folate intake and severe abdominal aorta calcification in adults: A cross-sectional analysis of the national health and nutrition examination survey. Diab Vasc Dis Res 2024; 21:14791641241246555. [PMID: 38597693 PMCID: PMC11015784 DOI: 10.1177/14791641241246555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Prior studies have established a connection between folate intake and cardiovascular disease (CVD). Abdominal aortic calcification (AAC) has been introduced as a good predictor of CVD events, but no previous study has investigated the relationship between dietary folate intake and severe AAC. Therefore, the study aims to explore the association between dietary folate intake and severe AAC in the United States (US) middle-aged and elderly population. METHODS This study employed cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to examine the relationship between dietary folate intake and severe AAC. Two 24-h dietary recall interviews were conducted to assess dietary folate intake and its sources, while a DXA scan was used to determine the AAC score. To analyze the association between dietary folate intake and severe AAC, a multivariable logistic regression model was applied, and a subgroup analysis was performed. RESULTS Our analysis utilized data from 2640 participants aged 40 years and above, including 288 individuals diagnosed with severe AAC. After adjusting for confounding factors, we observed an inverted L-shaped association between folate intake and severe AAC. Upon further adjustment for specific confounding factors and covariates, the multivariable-adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the second, third, and fourth quartiles of folate intake, using the first quartile as the reference, were as follows: 1.24 (0.86-1.79), 0.86 (0.58-1.27), and 0.63 (0.41-0.97), respectively. Subgroup analysis results were consistent with the logistic regression models, indicating concordant findings. Moreover, no significant interaction was observed in the subgroup analyses. CONCLUSIONS The study findings suggest an inverted L-shaped association between dietary folate intake and severe AAC. However, additional prospective investigations are necessary to explore the impact of dietary folate intake on severe AAC in patients.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Jianguo Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, China
| | - Bowen Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| | - Tianyi Cai
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - JiaYu Zhao
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - ZhaoXuan Gu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhengyan Hou
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - Xiaoqi Yu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - FangMing Gu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Yafang Gao
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - Rui Hu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - Jinyu Xie
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Cui
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Liu J, Li J, Wu X, Zhang M, Yan G, Sun H, Li D. High levels of fatty acid-binding protein 5 excessively enhances fatty acid synthesis and proliferation of granulosa cells in polycystic ovary syndrome. J Ovarian Res 2024; 17:44. [PMID: 38373971 PMCID: PMC10875862 DOI: 10.1186/s13048-024-01368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most complex endocrine disorders in women of reproductive age. Abnormal proliferation of granulosa cells (GCs) is an important cause of PCOS. This study aimed to explore the role of fatty acid-binding protein 5 (FABP5) in granulosa cell (GC) proliferation in polycystic ovary syndrome (PCOS) patients. METHODS The FABP5 gene, which is related to lipid metabolism, was identified through data analysis of the gene expression profiles of GSE138518 from the Gene Expression Omnibus (GEO) database. The expression levels of FABP5 were measured by quantitative real-time PCR (qRT‒PCR) and western blotting. Cell proliferation was evaluated with a cell counting kit-8 (CCK-8) assay. Western blotting was used to assess the expression of the proliferation marker PCNA, and immunofluorescence microscopy was used to detect Ki67 expression. Moreover, lipid droplet formation was detected with Nile red staining, and qRT‒PCR was used to analyze fatty acid storage-related gene expression. RESULTS We found that FABP5 was upregulated in ovarian GCs obtained from PCOS patients and PCOS mice. FABP5 knockdown suppressed lipid droplet formation and proliferation in a human granulosa-like tumor cell line (KGN), whereas FABP5 overexpression significantly enhanced lipid droplet formation and KGN cell proliferation. Moreover, we determined that FABP5 knockdown inhibited PI3K-AKT signaling by suppressing AKT phosphorylation and that FABP5 overexpression activated PI3K-AKT signaling by facilitating AKT phosphorylation. Finally, we used the PI3K-AKT signaling pathway inhibitor LY294002 and found that the facilitation of KGN cell proliferation and lipid droplet formation induced by FABP5 overexpression was inhibited. In contrast, the PI3K-AKT signaling pathway agonist SC79 significantly rescued the suppression of KGN cell proliferation and lipid droplet formation caused by FABP5 knockdown. CONCLUSIONS FABP5 promotes active fatty acid synthesis and excessive proliferation of GCs by activating PI3K-AKT signaling, suggesting that abnormally high expression of FABP5 in GCs may be a novel biomarker or a research target for PCOS treatment.
Collapse
Affiliation(s)
- Jingyu Liu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Jie Li
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xin Wu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Mei Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Guijun Yan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Haixiang Sun
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China.
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Dong Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China.
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
11
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Cheng D, Zheng B, Sheng Y, Zeng Z, Mo Z. The Roles of Autophagy in the Genesis and Development of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:2920-2931. [PMID: 37204635 DOI: 10.1007/s43032-023-01255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common and frequent disease and always leads endocrine and metabolic disorder among women in reproductive age. Ovary is the main organ involved in polycystic ovary syndrome, and its function impairment will lead to reproductive dysfunction. Some recent studies have demonstrated that autophagy plays an important role in the pathogenesis of PCOS, and there are many different mechanisms that affect autophagy and the occurrence of PCOS, and they provide a new direction for us to predict the mechanism of PCOS. In this review, we discuss the role of autophagy in different ovarian cells: granulosa cells, oocytes, and theca cells, and introduce the important role that they play in the progress of PCOS. The main purpose of this review is to provide the research background and some relevant suggestions for our future work in autophagy and help us better explore the pathogenesis and autophagy mechanisms of PCOS. Furthermore, it will help us gain a new insight of the pathophysiology and treatment of PCOS.
Collapse
Affiliation(s)
- Di Cheng
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guangxi, 541199, Guilin, China
- Joint Laboratory of Chronic Disease Prevention and Research, Guilin Medical University, Hunan Mingshun Pharmaceutical Co., Ltd, Shaodong, Hunan, 422800, Guilin, China
| | - Biao Zheng
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guangxi, 541199, Guilin, China
- Joint Laboratory of Chronic Disease Prevention and Research, Guilin Medical University, Hunan Mingshun Pharmaceutical Co., Ltd, Shaodong, Hunan, 422800, Guilin, China
| | - Ying Sheng
- Department of Obstetrics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoming Zeng
- Joint Laboratory of Chronic Disease Prevention and Research, Guilin Medical University, Hunan Mingshun Pharmaceutical Co., Ltd, Shaodong, Hunan, 422800, Guilin, China.
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guangxi, 541199, Guilin, China.
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
13
|
Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 2023; 12:2189. [PMID: 37681921 PMCID: PMC10487183 DOI: 10.3390/cells12172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and reduced fertility rates among affected women of reproductive age. While these symptoms can be managed through appropriate medication and lifestyle interventions, both etiology and treatment options remain limited. Here we provide a comprehensive overview of the latest advancements in cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell models, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, particularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore, this article encompasses analyses of the mechanisms and signaling pathways, microRNA expression and target genes altered in PCOS, and explores the pharmacological approaches considered as potential treatments. By summarizing the aforementioned key findings, this article not only allows us to appreciate the value of using in vitro cell models, but also provides guidance for selecting suitable research models to facilitate the identification of potential treatments and understand the pathophysiology of PCOS at the cellular level.
Collapse
Affiliation(s)
- Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung City 802, Taiwan
| | - Yen-Nung Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| |
Collapse
|
14
|
Zeng L, Zheng W, Liu X, Zhou Y, Jin X, Xiao Y, Bai Y, Pan Y, Zhang J, Shao C. SDC1-TGM2-FLOT1-BHMT complex determines radiosensitivity of glioblastoma by influencing the fusion of autophagosomes with lysosomes. Theranostics 2023; 13:3725-3743. [PMID: 37441590 PMCID: PMC10334832 DOI: 10.7150/thno.81999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment for GBM. Despite recent advances in tumor radiotherapy, the prognosis of GBM remains poor due to radioresistance. Autophagy has been reported as a basic factor to prolong the survival of tumor under radiation stress, but the molecular mechanism of how autophagy contributes to GBM radioresistance was still lacking. Methods: We established radioresistant GBM cells and identified their protein profiles by Tandem mass tag (TMT) quantitative proteomic analysis, then chose the radioresistant genes based on the TMT analysis of GBM cells and differentially expressed genes (DEGs) analysis of GEO database. Colony formation, flow cytometry, qPCR, western blotting, mRFP-GFP-LC3, transmission electron microscopy, immunofluorescence, and co-IP assays were conducted to investigate the regulation mechanisms among these new-found molecules. Results: Syndecan 1 (SDC1) and Transglutaminase 2 (TGM2) were both overexpressed in the radioresistant GBM cells and tissues, contributing to the dismal prognosis of radiotherapy. Mechanically, after irradiation, SDC1 carried TGM2 from cell membrane into cytoplasm, and transported to lysosomes by binding to flotillin 1 (FLOT1), then TGM2 recognized the betaine homocysteine methyltransferase (BHMT) on autophagosomes to coordinate the encounter between autophagosomes and lysosomes. Conclusions: The SDC1-TGM2-FLOT1-BHMT copolymer, a novel member of the protein complexes involved in the fusion of lysosomes and autophagosomes, maintained the autophagic flux in the irradiated tumor cells and ultimately enhanced radioresistance of GBM, which provides new insights of the molecular mechanism and therapeutic targets of radioresistant GBM.
Collapse
Affiliation(s)
- Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoya Jin
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuqi Xiao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Ma Y, Du C, Xie X, Zhang Y, Wang C, Xu J, Xia G, Yang Y. To explore the regulatory role of Wnt/P53/Caspase3 signal in mouse ovarian development based on LFQ proteomics. J Proteomics 2023; 272:104772. [PMID: 36414229 DOI: 10.1016/j.jprot.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Early ovarian follicular development is regulated by multiple proteins and signaling pathways, including the Wnt gene. To explore the regulatory mechanism of Wnt signaling on early ovarian follicular development, ovaries from 17.5 days post coitum (17.5 dpc) mice were collected and cultured in vitro for four days in the presence of IWP2 as a Wnt activity inhibitor and KN93 as a CaMKII inhibitor. LFQ proteomics technique was then used to analyze the significant differentially abundant (P-SDA) 93 and 262 proteins in the IWP2 and KN93 groups, respectively. Of these, 63 up-regulated proteins and 30 down-regulated proteins were identified for IWP2, along with 3 significant KEGG pathways (P < 0.05). For the KN93 group, 168 up-regulated proteins and 94 down-regulated ones were P-SDA, with 9 significant KEGG pathways also noted (P < 0.05). In both IWP2 and KN93 groups, key pathways (Wnt signaling pathway, Notch signaling pathway, P53 signaling pathway, TGF-β signaling pathway, ovarian steroid production) and metabolic regulation (energy metabolism, metal ion metabolism) were found to be related to early ovarian follicular development. Finally, western blotting demonstrated the regulatory role of Wnt/P53/Caspase3 signaling pathway in mouse ovarian development. These results contribute new knowledge to the understanding of regulatory factors of early ovarian follicular development. SIGNIFICANCE: In this study, label-free quantification (LFQ) was used in combination with liquid chromatography-mass spectrometer (LC-MS/MS) to study potential changes in the proteomic profiles of embryonic mice subjected to Wnt inhibitor IWP2 and CaMKIIinhibitor KN93. In addition, bioinformatics and comparative analyses were performed using publicly available proteomics databases to further explore the underlying mechanisms associated with early mouse ovarian growth and development.
Collapse
Affiliation(s)
- Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Changzheng Du
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|