1
|
Talbott EO, Malek AM, Arena VC, Wu F, Steffes K, Sharma RK, Buchanich J, Rager JR, Bear T, Hoffman CA, Lacomis D, Donnelly C, Mauna J, Vena JE. Case-control study of environmental toxins and risk of amyotrophic lateral sclerosis involving the national ALS registry. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:533-542. [PMID: 38591179 DOI: 10.1080/21678421.2024.2336108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Neurotoxic chemicals are suggested in the etiology of amyotrophic lateral sclerosis (ALS). We examined the association of environmental and occupational risk factors including persistent organochlorine pesticides (OCPs) and ALS risk among cases from the Centers for Disease Control and Prevention National ALS Registry and age, sex, and county-matched controls. METHODS Participants completed a risk factor survey and provided a blood sample for OCP measurement. ALS cases were confirmed through the Registry. Conditional logistic regression assessed associations between ALS and risk factors including OCP levels. RESULTS 243 matched case-control pairs (61.7% male, mean [SD] age = 62.9 [10.1]) were included. Fifteen of the 29 OCPs examined had sufficient detectable levels for analysis. Modest correlations of self-reported years of exposure to residential pesticide mixtures and OCP serum levels were found (p<.001). Moreover, occupational exposure to lead including soldering and welding with lead/metal dust and use of lead paint/gasoline were significantly related to ALS risk (OR = 1.77, 95% CI: 1.11-2.83). Avocational gardening was a significant risk factor for ALS (OR = 1.57, 95% CI: 1.04-2.37). ALS risk increased for each 10 ng/g of α-Endosulfan (OR = 1.42, 95% CI: 1.14-1.77) and oxychlordane (OR = 1.24, 95% CI: 1.01-1.53). Heptachlor (detectable vs. nondetectable) was also associated with ALS risk (OR = 3.57, 95% CI: 1.50-8.52). CONCLUSION This national case-control study revealed both survey and serum levels of OCPs as risk factors for ALS. Despite the United States banning many OCPs in the 1970s and 1980s, their use abroad and long half-lives continue to exert possible neurotoxic health effects.
Collapse
Affiliation(s)
- Evelyn O Talbott
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Angela M Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Vincent C Arena
- Department of Biostatistics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Fan Wu
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Kristen Steffes
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Ravi K Sharma
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Jeanine Buchanich
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Judith R Rager
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Todd Bear
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Caroline A Hoffman
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - David Lacomis
- Departments of Neurology and Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA, and
| | - Chris Donnelly
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jocelyn Mauna
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - John E Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
2
|
Wu F, Malek AM, Buchanich JM, Arena VC, Rager JR, Sharma RK, Vena JE, Bear T, Talbott EO. Exposure to ambient air toxicants and the risk of amyotrophic lateral sclerosis (ALS): A matched case control study. ENVIRONMENTAL RESEARCH 2024; 242:117719. [PMID: 37993052 DOI: 10.1016/j.envres.2023.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with few risk factors identified and no known cure. Gene-environment interaction is hypothesized especially for sporadic ALS cases (90-95%) which are of unknown etiology. We aimed to investigate risk factors for ALS including exposure to ambient air toxics. METHODS This population-based case-control study included 267 ALS cases (from the United States [U.S.] Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry National ALS Registry and Biorepository) and 267 age, sex, and county-matched controls identified via a commercial database. Exposure assessment for 34 ambient air toxicants was performed by assigning census tract-level U.S. Environmental Protection Agency (EPA) 2011 National Air Toxics Assessment (NATA) data to participants' residential ZIP codes. Conditional logistic regression was used to compute adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for individual compounds, chemical classes, and overall exposure. Sensitivity analyses using both conditional logistic regression and Bayesian grouped weighted quartile sum (GWQS) models were performed to assess the integrity of findings. RESULTS Using the 2011 NATA, the highest exposure quartile (Q4) compared to the lowest (Q1) of vinyl chloride (aOR = 6.00, 95% CI: 1.87-19.25), 2,4-dinitrotoluene (aOR = 5.45, 95% CI: 1.53-19.36), cyanide (aOR = 4.34, 95% CI: 1.52-12.43), cadmium (aOR = 3.30, 95% CI: 1.11-9.77), and carbon disulfide (aOR = 2.98, 95% CI: 1.00-8.91) was associated with increased odds of ALS. Residential air selenium showed an inverse association with ALS (second quartile [Q2] vs. Q1: aOR = 0.38, 95% CI: 0.18-0.79). Additionally, residential exposure to organic/chlorinated solvents (Q4 vs Q1: aOR = 2.62, 95% CI: 1.003-6.85) was associated with ALS. CONCLUSIONS Our findings using the 2011 NATA linked by census tract to residential area provide evidence of increased ALS risk in cases compared to controls for 2,4-dinitrotoluene, vinyl chloride, cyanide, and the organic/chlorinated solvents class. This underscores the importance of ongoing surveillance of potential exposures for at-risk populations.
Collapse
Affiliation(s)
- Fan Wu
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Angela M Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeanine M Buchanich
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vincent C Arena
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Judith R Rager
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ravi K Sharma
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - John E Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Todd Bear
- Department of Behavioral and Community Health Sciences, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Evelyn O Talbott
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Calderón-Garcidueñas L, Stommel EW, Rajkumar RP, Mukherjee PS, Ayala A. Particulate Air Pollution and Risk of Neuropsychiatric Outcomes. What We Breathe, Swallow, and Put on Our Skin Matters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111568. [PMID: 34770082 PMCID: PMC8583112 DOI: 10.3390/ijerph182111568] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023]
Abstract
We appraise newly accumulated evidence of the impact of particle pollution on the brain, the portals of entry, the neural damage mechanisms, and ultimately the neurological and psychiatric outcomes statistically associated with exposures. PM pollution comes from natural and anthropogenic sources such as fossil fuel combustion, engineered nanoparticles (NP ≤ 100 nm), wildfires, and wood burning. We are all constantly exposed during normal daily activities to some level of particle pollution of various sizes-PM2.5 (≤2.5 µm), ultrafine PM (UFP ≤ 100 nm), or NPs. Inhalation, ingestion, and dermal absorption are key portals of entry. Selected literature provides context for the US Environmental Protection Agency (US EPA) ambient air quality standards, the conclusions of an Independent Particulate Matter Review Panel, the importance of internal combustion emissions, and evidence suggesting UFPs/NPs cross biological barriers and reach the brain. NPs produce oxidative stress and neuroinflammation, neurovascular unit, mitochondrial, endoplasmic reticulum and DNA damage, protein aggregation and misfolding, and other effects. Exposure to ambient PM2.5 concentrations at or below current US standards can increase the risk for TIAs, ischemic and hemorrhagic stroke, cognitive deficits, dementia, and Alzheimer's and Parkinson's diseases. Residing in a highly polluted megacity is associated with Alzheimer neuropathology hallmarks in 99.5% of residents between 11 months and ≤40 y. PD risk and aggravation are linked to air pollution and exposure to diesel exhaust increases ALS risk. Overall, the literature supports that particle pollution contributes to targeted neurological and psychiatric outcomes and highlights the complexity of the pathophysiologic mechanisms and the marked differences in pollution profiles inducing neural damage. Factors such as emission source intensity, genetics, nutrition, comorbidities, and others also play a role. PM2.5 is a threat for neurological and psychiatric diseases. Thus, future research should address specifically the potential role of UFPs/NPs in inducing neural damage.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA;
- Universidad del Valle de México, Mexico City 14370, Mexico
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India;
| | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India;
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
4
|
Hoffman HI, Bradley WG, Chen CY, Pioro EP, Stommel EW, Andrew AS. Amyotrophic Lateral Sclerosis Risk, Family Income, and Fish Consumption Estimates of Mercury and Omega-3 PUFAs in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094528. [PMID: 33923256 PMCID: PMC8123167 DOI: 10.3390/ijerph18094528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Most amyotrophic lateral sclerosis (ALS) cases are considered sporadic, without a known genetic basis, and lifestyle factors are suspected to play an etiologic role. We previously observed increased risk of ALS associated with high nail mercury levels as an exposure biomarker and thus hypothesized that mercury exposure via fish consumption patterns increases ALS risk. Lifestyle surveys were obtained from ALS patients (n = 165) and n = 330 age- and sex-matched controls without ALS enrolled in New Hampshire, Vermont, or Ohio, USA. We estimated their annual intake of mercury and omega-3 polyunsaturated fatty acid (PUFA) via self-reported seafood consumption habits, including species and frequency. In our multivariable model, family income showed a significant positive association with ALS risk (p = 0.0003, adjusted for age, sex, family history, education, and race). Neither the estimated annual mercury nor omega-3 PUFA intakes via seafood were associated with ALS risk. ALS incidence is associated with socioeconomic status; however, consistent with a prior international study, this relationship is not linked to mercury intake estimated via fish or seafood consumption patterns.
Collapse
Affiliation(s)
- Hannah I. Hoffman
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; (H.I.H.); (C.Y.C.)
| | - Walter G. Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Celia Y. Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; (H.I.H.); (C.Y.C.)
| | - Erik P. Pioro
- ALS and Neuromuscular Disease Center, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine, Lebanon, NH 03756, USA;
| | - Angeline S. Andrew
- Department of Neurology, Geisel School of Medicine, Lebanon, NH 03756, USA;
- Correspondence: ; Tel.: +1-603-653-9019
| |
Collapse
|