1
|
Yang L, Lin Z, Mu R, Wu W, Zhi H, Liu X, Yang H, Liu L. Neurons enhance blood-brain barrier function via upregulating claudin-5 and VE-cadherin expression due to glial cell line-derived neurotrophic factor secretion. eLife 2024; 13:RP96161. [PMID: 39475379 PMCID: PMC11524583 DOI: 10.7554/elife.96161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Blood-brain barrier (BBB) prevents neurotoxins from entering central nervous system. We aimed to establish and characterize an in vitro triple co-culture BBB model consisting of brain endothelial cells hCMEC/D3, astrocytoma U251 cells, and neuroblastoma SH-SY5Y cells. Co-culture of SH-SY5Y and U251 cells markedly enhanced claudin-5 and VE-cadherin expression in hCMEC/D3 cells, accompanied by increased transendothelial electrical resistance and decreased permeability. Conditioned medium (CM) from SH-SY5Y cells (S-CM), U251 cells (U-CM), and co-culture of SH-SY5Y and U251 cells (US-CM) also promoted claudin-5 and VE-cadherin expression. Glial cell line-derived neurotrophic factor (GDNF) levels in S-CM and US-CM were significantly higher than CMs from hCMEC/D3 and U-CM. Both GDNF and US-CM upregulated claudin-5 and VE-cadherin expression, which were attenuated by anti-GDNF antibody and GDNF signaling inhibitors. GDNF increased claudin-5 expression via the PI3K/AKT/FOXO1 and MAPK/ERK pathways. Meanwhile, GDNF promoted VE-cadherin expression by activating PI3K/AKT/ETS1 and MAPK/ERK/ETS1 signaling. The roles of GDNF in BBB integrity were validated using brain-specific Gdnf silencing mice. The developed triple co-culture BBB model was successfully applied to predict BBB permeability. In conclusion, neurons enhance BBB integrity by upregulating claudin-5 and VE-cadherin expression through GDNF secretion and established triple co-culture BBB model may be used to predict drugs' BBB permeability.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Zijin Lin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Ruijing Mu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Wenhan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hao Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Xiaodong Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hanyu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Li Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| |
Collapse
|
2
|
Kanjanasirirat P, Saengsawang W, Ketsawatsomkron P, Asavapanumas N, Borwornpinyo S, Soodvilai S, Hongeng S, Charoensutthivarakul S. GDNF and cAMP significantly enhance in vitro blood-brain barrier integrity in a humanized tricellular transwell model. Heliyon 2024; 10:e39343. [PMID: 39492921 PMCID: PMC11530796 DOI: 10.1016/j.heliyon.2024.e39343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Blood-brain barrier (BBB) is a crucial membrane safeguarding neural tissue by controlling the molecular exchange between blood and the brain. However, assessing BBB permeability presents challenges for central nervous system (CNS) drug development. In vitro studies of BBB-permeable agents before animal testing are essential to mitigate failures. Improved in vitro models are needed to mimic physiologically relevant BBB integrity. Here, we established an in vitro human-derived triculture BBB model, coculturing hCMEC/D3 with primary astrocytes and pericytes in a transwell format. This study found that the triculture BBB model exhibited significantly higher paracellular tightness (TEER 147.6 ± 6.5 Ω × cm2) than its monoculture counterpart (106.3 ± 1.0 Ω × cm2). Additionally, BBB permeability in the triculture model was significantly lower. While GDNF and cAMP have been shown to promote BBB integrity in monoculture models, their effect in our model was previously unreported. Our study demonstrates that both GDNF and cAMP increased TEER values (around 200 Ω × cm2 for each; 237.6 ± 17.7 Ω × cm2 for co-treatment) compared to untreated control, and decreased BBB permeability, mediated by increased claudin-5 expression. In summary, this humanized triculture BBB model, enhanced by GDNF and cAMP, offers an alternative for exploring in vitro drug penetration into the human brain.
Collapse
Affiliation(s)
- Phongthon Kanjanasirirat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Witchuda Saengsawang
- Department of Basic Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sunhapas Soodvilai
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Wu PZ, Yao J, Meng B, Qin YB, Cao S. Blood-nerve barrier enhances chronic postsurgical pain via the HIF-1α/ aquaporin-1 signaling axis. BMC Anesthesiol 2023; 23:381. [PMID: 37990154 PMCID: PMC10662690 DOI: 10.1186/s12871-023-02306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Blood nerve barrier (BNB) participates in the development of neuropathic pain. AQP1 is involved in peripheral pain perception and is negatively correlated with HIF-1α phenotype, which regulates endothelial permeability. However, the role of HIF-1α-AQP1-mediated BNB dysfunction in Chronic Postsurgical Pain (CPSP) has not been reported. METHODS Male Sprague-Dawley rats were randomized into 5 groups: (i) Naive group; (ii) Sham group; (iii) SMIR group: skin/muscle incision and retraction for one hour. Behavioral tests were performed for the three groups, BNB vascular permeability and western blotting were conducted to determine HIF-1α and AQP1 protein expression. (iv) The SMIR + HIF-1α inhibitor group; (v) SMIR + DMSO group. Rats in the two groups were administered with HIF-1α inhibitor (2ME2) or DMSO intraperitoneally on the third day post-SMIR surgery followed by performance of behavioral tests, BNB permeability assessment, and determination of HIF-1α, AQP1 and NF200 protein levels. RESULTS The permeability of BNB was significantly increased and the expression of AQP1 was downregulated on the 3rd and 7th days post-operation. AQP1 is mainly located in neurons and NF200, CGRP-positive nerve fibers. HIF-1α was highly expressed on the third day post-operation. HIF-1α inhibitor reversed the decrease in AQP1 expression and increase in NF200 expression, barrier permeability and hyperalgesia induced by SMIR on the 3rd day post-surgery. CONCLUSIONS Early dysfunction of BNB mediated by HIF-1α/AQP1 activated by SMIR may be an important mechanism to promote acute postoperative painful transformation of CPSP. Preadaptive protection of endothelial cells around nerve substructures may be an important countermeasure to inhibit CPSP transformation. Early impairment of BNB function mediated by HIF-1α/AQP1 activated by SMIR may be an important mechanism for promoting acute postoperative pain transformation of CPSP.
Collapse
Affiliation(s)
- Pei-Zhi Wu
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Ju Yao
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Bei Meng
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yi-Bin Qin
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Su Cao
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Staszkiewicz R, Gralewski M, Gładysz D, Bryś K, Garczarek M, Gadzieliński M, Marcol W, Sobański D, Grabarek BO, sobaÅ Ski D, Grabarek BO. Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. Mol Pain 2023; 19:17448069231158287. [PMID: 36733259 PMCID: PMC10071099 DOI: 10.1177/17448069231158287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Important neurotrophic factors that are potentially involved in degenerative intervertebral disc (IVD) disease of the spine's lumbosacral (L/S) region include glial cell-derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP-43). The aim of this study was to determine and compare the concentrations of GAP-43 and GDNF in degenerated and healthy IVDs and to quantify and compare the GAP-43-positive and GDNF-positive nerve fibers. The study group consisted of 113 Caucasian patients with symptomatic lumbosacral discopathy (confirmed by a specialist surgeon), an indication for surgical treatment. The control group included 81 people who underwent postmortem examination. GAP-43 and GDNF concentrations were significantly higher in IVD samples from the study group compared with the control group, and the highest concentrations were observed in the degenerated IVDs that were graded 4 on the Pfirrmann scale. In the case of GAP-43, it was found that as the degree of IVD degeneration increased, the number of GAP-43-positive nerve fibers decreased. In the case of GDNF, the greatest number of fibers per mm2 of surface area was found in the IVD samples graded 3 on the Pfirrmann scale, and the number was found to be lower in samples graded 4 and 5. Hence, GAP-43 and GDNF are promising targets for analgesic treatment of degenerative IVD disease of the lumbosacral region of the spine.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Marcin Gralewski
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Michał Garczarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Marcin Gadzieliński
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, 49613Medical University of Silesia, Katowice, Poland.,Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, Jastrzębie-Zdrój, Poland
| | - Dawid Sobański
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland.,Department of Neurosurgery, Szpital sw Rafala w Krakowie, Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | | | | |
Collapse
|
5
|
Petrova ES, Kolos EA. Current Views on Perineurial Cells: Unique Origin, Structure, Functions. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302201001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Kanwore K, Kambey PA, Guo XX, Abiola AA, Xia Y, Gao D. Extracellular and Intracellular Factors in Brain Cancer. Front Cell Dev Biol 2021; 9:699103. [PMID: 34513834 PMCID: PMC8429835 DOI: 10.3389/fcell.2021.699103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
The external and internal factors of the cell are critical to glioma initiation. Several factors and molecules have been reported to be implicated in the initiation and progression of brain cancer. However, the exact sequence of events responsible for glioma initiation is still unknown. Existing reports indicate that glioma stem cells are the cell of glioma origin. During cell division, chromosome breakage, DNA alteration increases the chance of cell genome modifications and oncogene overexpression. Although there is a high risk of gene alteration and oncogene overexpression, not everyone develops cancer. During embryogenesis, the same oncogenes that promote cancers have also been reported to be highly expressed, but this high expression which does not lead to carcinogenesis raises questions about the role of oncogenes in carcinogenesis. The resistance of cancer cells to drugs, apoptosis, and immune cells does not rely solely on oncogene overexpression but also on the defect in cell organelle machinery (mitochondria, endoplasmic reticulum, and cytoskeleton). This review discusses factors contributing to cancer; we report the dysfunction of the cell organelles and their contribution to carcinogenesis, while oncogene overexpression promotes tumorigenesis, maintenance, and progression through cell adhesion. All these factors together represent a fundamental requirement for cancer and its development.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ayanlaja Abdulrahman Abiola
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Dong C, Choudhary A, Ubogu EE. Glial derived neurotrophic factor: a sufficient essential molecular regulator of mammalian blood-nerve barrier tight junction formation. Neural Regen Res 2021; 16:1417-1418. [PMID: 33318434 PMCID: PMC8284256 DOI: 10.4103/1673-5374.300992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chaoling Dong
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aarti Choudhary
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eroboghene E. Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Biology of the human blood-nerve barrier in health and disease. Exp Neurol 2020; 328:113272. [PMID: 32142802 DOI: 10.1016/j.expneurol.2020.113272] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
A highly regulated endoneurial microenvironment is required for normal axonal function in peripheral nerves and nerve roots, which structurally consist of an outer collagenous epineurium, inner perineurium consisting of multiple concentric layers of specialized epithelioid myofibroblasts that surround the innermost endoneurium, which consists of myelinated and unmyelinated axons embedded in a looser mesh of collagen fibers. Endoneurial homeostasis is achieved by tight junction-forming endoneurial microvessels that control ion, solute, water, nutrient, macromolecule and leukocyte influx and efflux between the bloodstream and endoneurium, and the innermost layers of the perineurium that control interstitial fluid component flux between the freely permeable epineurium and endoneurium. Strictly speaking, endoneurial microvascular endothelium should be considered the blood-nerve barrier (BNB) due to direct communication with circulating blood. The mammalian BNB is considered the second most restrictive vascular system after the blood-brain barrier (BBB) based on classic in situ permeability studies. Structural alterations in endoneurial microvessels or interactions with hematogenous leukocytes have been described in several human peripheral neuropathies; however major advances in BNB biology in health and disease have been limited over the past 50 years. Guided by transcriptome and proteome studies of normal and pathologic human peripheral nerves, purified primary and immortalized human endoneurial endothelial cells that form the BNB and leukocytes from patients with well-characterized peripheral neuropathies, validated by in situ or ex vivo protein expression studies, data are emerging on the molecular and functional characteristics of the human BNB in health and in specific peripheral neuropathies, as well as chronic neuropathic pain. These early advancements have the potential to not only increase our understanding of how the BNB works and adapts or fails to adapt to varying insult, but provide insights relevant to pathogenic leukocyte trafficking, with translational potential and specific therapeutic application for chronic peripheral neuropathies and neuropathic pain.
Collapse
|