1
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
2
|
Khosropanah MH, Majidi Zolbin M, Kajbafzadeh AM, Amani L, Harririan I, Azimzadeh A, Nejatian T, Alizadeh Vaghsloo M, Hassannejad Z. Evaluation and Comparison of the Effects of Mature Silkworm ( Bombyx mori) and Silkworm Pupae Extracts on Schwann Cell Proliferation and Axon Growth: An In Vitro Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133552. [PMID: 36896320 PMCID: PMC9990520 DOI: 10.5812/ijpr-133552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Background Silkworm products were first used by physicians more than 8500 years ago, in the early Neolithic period. In Persian medicine, silkworm extract has several uses for treating and preventing neurological, cardiac, and liver diseases. Mature silkworms (Bombyx mori) and their pupae contain a variety of growth factors and proteins that can be used in many repair processes, including nerve regeneration. Objectives The study aimed to evaluate the effects of mature silkworm (Bombyx mori), and silkworm pupae extract on Schwann cell proliferation and axon growth. Methods Silkworm (Bombyx mori) and silkworm pupae extracts were prepared. Then, the concentration and type of amino acids and proteins in the extracts were evaluated by Bradford assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and liquid chromatograph-mass spectrometer (LC-MS/MS). Also, the regenerative potential of extracts for improving Schwann cell proliferation and axon growth was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, electron microscopy, and NeuroFilament-200 (NF-200) immunostaining. Results According to the results of the Bradford test, the total protein content of pupae extract was almost twice that of mature worm extract. Also, SDS-PAGE analysis revealed numerous proteins and growth factors, such as bombyrin and laminin, in extracts that are involved in the repair of the nervous system. In accordance with Bradford's results, the evaluation of extracts using LC-MS/MS revealed that the number of amino acids in pupae extract was higher than in mature silkworm extract. It was found that the proliferation of Schwann cells at a concentration of 0.25 mg/mL in both extracts was higher than the concentrations of 0.01 and 0.05 mg/mL. When using both extracts on dorsal root ganglion (DRGs), an increase in length and number was observed in axons. Conclusions The findings of this study demonstrated that extracts obtained from silkworms, especially pupae, can play an effective role in Schwann cell proliferation and axonal growth, which can be strong evidence for nerve regeneration, and, consequently, repairing peripheral nerve damage.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leili Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Harririan
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Touraj Nejatian
- AFHEA Prosthodontics and ORE University College London, London, England
| | - Mahdi Alizadeh Vaghsloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine Network, Universal Scientific Education and Research Network, Tehran, Iran
- Corresponding Author: Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_30-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Zhao D, Behzadian N, Yeomans D, Anderson TA. In Vivo Whole-Nerve Electrophysiology Setup, Action Potential Recording, and Data Analyses in a Rodent Model. Curr Protoc 2021; 1:e285. [PMID: 34748292 DOI: 10.1002/cpz1.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In vivo rodent, whole peripheral nerve models are useful for studying the electrical conduction of sensory and motor fibers under normal physiological conditions as well as for assessing neurological outcomes after the application of physical alterations or pharmacological agents to the nervous system. Significant literature has focused on single-neuron and central nervous system electrophysiology protocol development. However, creation and development of in vivo whole-nerve electrophysiological recording protocols are sparse in the scientific literature. Here, detailed protocols for designing and building an in vivo whole-nerve electrophysiology system are described, including straightforward techniques to create working stimulation and recording electrodes that may be adapted to numerous study designs. Further, we include details for rodent anesthesia, surgical dissection (for the sciatic nerve), compound action potential signal optimization, data acquisition, data analyses, and troubleshooting tips. © 2021 Wiley Periodicals LLC. Basic Protocol 1: In vivo electrophysiology system wiring, hardware, and software setups Support Protocol 1: Design and 3D printing of electrophysiology base electrodes Support Protocol 2: Building needle electrodes Basic Protocol 2: Rodent anesthesia and surgery for nerve exposure Basic Protocol 3: Compound action potential recording and troubleshooting using WinWCP Basic Protocol 4: Compound action potential data analysis using WinWCP.
Collapse
Affiliation(s)
- Diane Zhao
- Stanford University School of Medicine, Palo Alto, California
| | - Negin Behzadian
- Stanford University School of Medicine, Palo Alto, California
| | - David Yeomans
- Stanford University School of Medicine, Palo Alto, California
| | | |
Collapse
|
5
|
Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A 2021; 109:1588-1599. [PMID: 33634587 DOI: 10.1002/jbm.a.37153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
The main aim of this study was to evaluate the efficacy of cerium oxide nanoparticles (CNPs) encapsulated in fabricated hybrid silk-fibroin (SF)/polycaprolactone (PCL) nanofibers as an artificial neural guidance conduit (NGC) applicable for peripheral nerve regeneration. The NGC was prepared by PCL and SF filled with CNPs. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of CNPs inside SF and SF/PCL wall of conduits was 1% (wt/wt). The SEM image analysis showed the nanoscale texture of the scaffold in different topologies depend on composition with fiber diameters at about 351 ± 54 nm and 420 ± 73 nm respectively for CNPs + SF and CNPs + SF/PCL fibrous mats. Furthermore, contact angle measurement confirmed the hydrophilic behavior of the membranes, ascribable to the SF content and surface modification through modified methanol treatment. The balance of morphological and biochemical properties of hybrid CNPs 1% (wt/wt) + SF/PCL construct improves cell adhesion and proliferation in comparison with lower concentrations of CNPs in nanofibrous scaffolds. The release of CNPs 1% (wt/wt) from both CNPs + SF and CNPs+ SF/PCL fibrous mats was highly controlled and very slow during the extended time of incubation until 60 days. Fabricated double-layered NGC using CNPs + SF and CNPs + SF/PCL fibers was consistent for application in nervous tissue engineering and regenerative medicine from a structural and biocompatible perspective.
Collapse
Affiliation(s)
- Jamileh Saremi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nozari N, Biazar E, Kamalvand M, Keshel SH, Shirinbakhsh S. Photo Cross-linkable Biopolymers for Cornea Tissue Healing. Curr Stem Cell Res Ther 2021; 17:58-70. [PMID: 34269669 DOI: 10.2174/1574888x16666210715112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Light can act as an effective and strong agent for the cross-linking of biomaterials and tissues and is recognized as a safe substitute for chemical cross-linkers to modify mechanical and physical properties and promote biocompatibility. This review focuses on the research about cross-linked biomaterials with different radiation sources such as Laser or Ultraviolet (UV) that can be applied as scaffolds, controlled release systems, and tissue adhesives for cornea healing and tissue regeneration.
Collapse
Affiliation(s)
- Negar Nozari
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shervin Shirinbakhsh
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
7
|
Aavani F, Biazar E, Heshmatipour Z, Arabameri N, Kamalvand M, Nazbar A. Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regen Med 2021; 16:581-605. [PMID: 34030458 DOI: 10.2217/rme-2020-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Nasibeh Arabameri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Abolfazl Nazbar
- National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran
| |
Collapse
|
8
|
Wu SH, Liao YT, Hsueh KK, Huang HK, Chen TM, Chiang ER, Hsu SH, Tseng TC, Wang JP. Adipose-Derived Mesenchymal Stem Cells From a Hypoxic Culture Improve Neuronal Differentiation and Nerve Repair. Front Cell Dev Biol 2021; 9:658099. [PMID: 33996818 PMCID: PMC8120285 DOI: 10.3389/fcell.2021.658099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxic expansion has been demonstrated to enhance in vitro neuronal differentiation of bone-marrow derived mesenchymal stem cells (BMSCs). Whether adipose-derived mesenchymal stem cells (ADSCs) increase their neuronal differentiation potential following hypoxic expansion has been examined in the study. Real-time quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were employed to detect the expression of neuronal markers and compare the differentiation efficiency of hypoxic and normoxic ADSCs. A sciatic nerve injury animal model was used to analyze the gastrocnemius muscle weights as the outcomes of hypoxic and normoxic ADSC treatments, and sections of the regenerated nerve fibers taken from the conduits were analyzed by histological staining and immunohistochemical staining. Comparisons of the treatment effects of ADSCs and BMSCs following hypoxic expansion were also conducted in vitro and in vivo. Hypoxic expansion prior to the differentiation procedure promoted the expression of the neuronal markers in ADSC differentiated neuron-like cells. Moreover, the conduit connecting the sciatic nerve gap injected with hypoxic ADSCs showed the highest recovery rate of the gastrocnemius muscle weights in the animal model, suggesting a conceivable treatment for hypoxic ADSCs. The percentages of the regenerated myelinated fibers from the hypoxic ADSCs detected by toluidine blue staining and myelin basic protein (MBP) immunostaining were higher than those of the normoxic ones. On the other hand, hypoxic expansion increased the neuronal differentiation potential of ADSCs compared with that of the hypoxic BMSCs in vitro. The outcomes of animals treated with hypoxic ADSCs and hypoxic BMSCs showed similar results, confirming that hypoxic expansion enhances the neuronal differentiation potential of ADSCs in vitro and improves in vivo therapeutic potential.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Kai Hsueh
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hui-Kuang Huang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tung-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Orthopedics, Taipei City Hospital-Zhong Xiao Branch, Taipei, Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Meehan SD, Abdelrahman L, Arcuri J, Park KK, Samarah M, Bhattacharya SK. Proteomics and systems biology in optic nerve regeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:249-270. [PMID: 34340769 DOI: 10.1016/bs.apcsb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.
Collapse
Affiliation(s)
- Sean D Meehan
- Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Kevin K Park
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States; Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | | | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States.
| |
Collapse
|
10
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3524-3539. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system is known as a crucial part of the body and derangement in this system can cause potentially lethal consequences or serious side effects. Unfortunately, the nervous system is unable to rehabilitate damaged regions following seriously debilitating disorders such as stroke, spinal cord injury and brain trauma which, in turn, lead to the reduction of quality of life for the patient. Major challenges in restoring the damaged nervous system are low regenerative capacity and the complexity of physiology system. Synthetic polymeric biomaterials with outstanding properties such as excellent biocompatibility and non-immunogenicity find a wide range of applications in biomedical fields especially neural implants and nerve tissue engineering scaffolds. Despite these advancements, tailoring polymeric biomaterials for design of a desired scaffold is fundamental issue that needs tremendous attention to promote the therapeutic benefits and minimize adverse effects. This review aims to (i) describe the nervous system and related injuries. Then, (ii) nerve tissue engineering strategies are discussed and (iii) physiochemical properties of synthetic polymeric biomaterials systematically highlighted. Moreover, tailoring synthetic polymeric biomaterials for nerve tissue engineering is reviewed.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science , Tehran , Iran
| | - Hanif Kazerooni
- Biotechnology Group, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Hossein Hassanpoor
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute , Tehran , Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Alessandrino A, Fregnan F, Biagiotti M, Muratori L, Bassani GA, Ronchi G, Vincoli V, Pierimarchi P, Geuna S, Freddi G. SilkBridge™: a novel biomimetic and biocompatible silk-based nerve conduit. Biomater Sci 2019; 7:4112-4130. [PMID: 31359013 DOI: 10.1039/c9bm00783k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silk fibroin (Bombyx mori) was used to manufacture a nerve conduit (SilkBridge™) characterized by a novel 3D architecture. The wall of the conduit consists of two electrospun layers (inner and outer) and one textile layer (middle), perfectly integrated at the structural and functional level. The manufacturing technology conferred high compression strength on the device, thus meeting clinical requirements for physiological and pathological compressive stresses. In vitro cell interaction studies were performed through direct contact assays with SilkBridge™ using the glial RT4-D6P2T cells, a schwannoma cell line, and a mouse motor neuron NSC-34 cell line. The results revealed that the material is capable of sustaining cell proliferation, that the glial RT4-D6P2T cells increased their density and organized themselves in a glial-like morphology, and that NSC-34 motor neurons exhibited a greater neuritic length with respect to the control substrate. In vivo pilot assays were performed on adult female Wistar rats. A 10 mm long gap in the median nerve was repaired with 12 mm SilkBridge™. At two weeks post-operation several cell types colonized the lumen. Cells and blood vessels were also visible between the different layers of the conduit wall. Moreover, the presence of regenerated myelinated fibers with a thin myelin sheath at the proximal level was observed. Taken together, all these results demonstrated that SilkBridge™ has an optimized balance of biomechanical and biological properties, being able to sustain a perfect cellular colonization of the conduit and the progressive growth of the regenerating nerve fibers.
Collapse
Affiliation(s)
| | - F Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - M Biagiotti
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - L Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - G A Bassani
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - G Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - V Vincoli
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - P Pierimarchi
- Institute of Translational Pharmacology, National Research Council, 00083 Rome, Italy
| | - S Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - G Freddi
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| |
Collapse
|
13
|
Mohamadi F, Ebrahimi-Barough S, Nourani MR, Ahmadi A, Ai J. Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:34-45. [PMID: 29557195 DOI: 10.1080/21691401.2018.1451339] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Regeneration of peripheral nerve defects remained a remarkable clinical challenge. Engineered nerve conduits represent a promising strategy to improve functional recovery in peripheral nerve injury repair. However, nerve conduits require additional factors such as neurotrophic factors to create a more conducive microenvironment for nerve regeneration. Neurotrophic factors have well-demonstrated abilities to improve neurite outgrowth, making them great candidates for repairing of defected nerves. To this end, we examined the beneficial effects of repairing the transected rat sciatic nerve by loading of nerve growth factor (NGF) in nerve conduits. The PCL/Collagen/NBG conduits were interposed into the 10 mm right sciatic nerve defects. Twenty-four rats were randomly allocated into four groups: 1- nerve autograft group, 2- a nongrafted group with gap 10-mm, 3- conduit group and 4- the conduits loaded with NGF. Motor and sensory functional recovery, the evoked muscle action potential, and motor distal latency showed significant improvement in rats treated with NGF. The histology and immunohistochemistry studies revealed less fibrosis and a high level of expression of CD31 and NF-200 protein at the crush site in the Conduit + NGF group. In conclusion, the PCL/Collagen/NBG conduit loaded with NGF, which exhibited nanometer-scale features, neurotrophic activity, favorable mechanical properties and biocompatibility could improve sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Forouzan Mohamadi
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Somayeh Ebrahimi-Barough
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Nourani
- b Nano Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Akbar Ahmadi
- c School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Jafar Ai
- a Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|