1
|
Lan Y, Li X, Liu B, Lu J, Zuo B, Wang Y, Cao S, Fu X, Yue Q, Luo X, Zhong X, Dong Y, Wang Z, Yang T, Xie X, Zeng T, Zhang M, Wang Y, Shen Y, Zuo H, Zhao Y, Zhang C, Guo H. Framework nucleic acid-based nanoparticles enhance temozolomide sensitivity in glioblastoma. Drug Resist Updat 2024; 76:101122. [PMID: 39079407 DOI: 10.1016/j.drup.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) is a crucial determinant of temozolomide (TMZ) sensitivity in patients with glioblastoma (GBM). The therapeutic potential of small interfering RNA (siRNA) targeting MGMT to enhance TMZ sensitivity has been hampered by serum nuclease degradation, off-target effects, poor accumulation at tumor sites, and low circulation in blood stream. In this study, we developed a framework nucleic acid-based nanoparticles (FNN), which is constructed from a six-helix DNA bundle, to encapsulate and protect siMGMT for improving TMZ sensitivity in GBM treatment. For better blood-brain barrier (BBB) penetration and GBM targeting, we conjugated Angiopep-2 (ANG) targeting modules to each end of the FNN. Nucleolin (NCL)-responsive locks were engineered along the sides of the six-helix DNA bundle, which safeguard siMGMT before tumor entry. Upon interaction with tumor-overexpressed NCL, these locks unlock, exposing siMGMT, this allows for effective suppression of MGMT, resulting in a significant improvement of TMZ therapeutic efficacy in GBM. This innovative strategy has the potential to transform the current treatment landscape for GBM.
Collapse
Affiliation(s)
- Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodie Li
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiankun Lu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boming Zuo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | | | - Xin Fu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qu Yue
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Luo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yaoyuan Dong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xinyun Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tianci Zeng
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Manqing Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuankai Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yixiong Shen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Chao Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
2
|
Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ. Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 2022; 19:1397-1415. [DOI: 10.1080/17425247.2022.2124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Inês David Torres
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A N Coelho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|
4
|
Song Y, Bai L, Yan F, Chen C. Inhibition of EMMPRIN by microRNA-124 suppresses the growth, invasion and tumorigenicity of gliomas. Exp Ther Med 2021; 22:930. [PMID: 34306199 PMCID: PMC8281370 DOI: 10.3892/etm.2021.10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/17/2021] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miR) are a group of non-coding, small RNAs, 18-20 nucleotides in length, that are frequently involved in the development of a variety of different types of cancer, including glioma, which is a type of severe tumor in the brain. Previous studies reported that miR-124 levels were downregulated in glioma specimens; however, the potential role of miR-124 in glioma currently remains unclear. The present study performed experiments, including dual-luciferase reporter assay (DLRA), MTT assay, transwell assay and flow cytometry, with the aim of elucidating the molecular mechanism of miR-124 in glioma. The results indicated that miR-124 expression was decreased in glioma tissues, accompanied by the increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN). The expression of EMMPRIN was inhibited by miR-124 transfection. The DLRA results revealed that EMMPRIN directly targets miR-124. Furthermore, upon overexpression of miR-124 in the U87 cells, cell proliferation was significantly inhibited, apoptosis was increased, and cell migration and invasion were decreased. Furthermore, tumor growth was blocked by miR-124 in mice. Based on these results, the present study concluded that miR-124 is critical for amelioration of glioma by targeting EMMPRIN, thereby acting as a tumor suppressor. Thus, miR-124/EMMPRIN constitutes a plausible basis for the treatment of glioma.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| | - Lei Bai
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| | - Feiping Yan
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| | - Chen Chen
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| |
Collapse
|
5
|
Yang TC, Liu SJ, Lo WL, Chen SM, Tang YL, Tseng YY. Enhanced Anti-Tumor Activity in Mice with Temozolomide-Resistant Human Glioblastoma Cell Line-Derived Xenograft Using SN-38-Incorporated Polymeric Microparticle. Int J Mol Sci 2021; 22:ijms22115557. [PMID: 34074038 PMCID: PMC8197307 DOI: 10.3390/ijms22115557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has remained one of the most lethal and challenging cancers to treat. Previous studies have shown encouraging results when irinotecan was used in combination with temozolomide (TMZ) for treating GBM. However, irinotecan has a narrow therapeutic index: a slight dose increase in irinotecan can induce toxicities that outweigh its therapeutic benefits. SN-38 is the active metabolite of irinotecan that accounts for both its anti-tumor efficacy and toxicity. In our previous paper, we showed that SN-38 embedded into 50:50 biodegradable poly[(d,l)-lactide-co-glycolide] (PLGA) microparticles (SMPs) provides an efficient delivery and sustained release of SN-38 from SMPs in the brain tissues of rats. These properties of SMPs give them potential for therapeutic application due to their high efficacy and low toxicity. In this study, we tested the anti-tumor activity of SMP-based interstitial chemotherapy combined with TMZ using TMZ-resistant human glioblastoma cell line-derived xenograft models. Our data suggest that treatment in which SMPs are combined with TMZ reduces tumor growth and extends survival in mice bearing xenograft tumors derived from both TMZ-resistant and TMZ-sensitive human glioblastoma cell lines. Our findings demonstrate that combining SMPs with TMZ may have potential as a promising strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Tao-Chieh Yang
- Department of Neurosurgery, School of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (S.-J.L.); (Y.-L.T.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan
| | - Wei-Lun Lo
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Shu-Mei Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ya-Ling Tang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (S.-J.L.); (Y.-L.T.)
| | - Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Correspondence: ; Tel.: +886-2-22490088 (ext. 8120); Fax: +886-2-22480900
| |
Collapse
|
6
|
Turek A, Stoklosa K, Borecka A, Paul-Samojedny M, Kaczmarczyk B, Marcinkowski A, Kasperczyk J. Designing Biodegradable Wafers Based on Poly(L-lactide-co-glycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme. Pharm Res 2020; 37:90. [PMID: 32382838 PMCID: PMC7205781 DOI: 10.1007/s11095-020-02810-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/01/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE The blood-brain barrier limits the application of idarubicin in the therapy of glioblastoma multiforme. Biodegradable, intracranial wafers with prolonged release may increase therapy efficiency. METHODS Blank wafers, wafers containing 5% w/w and 10% w/w of idarubicin were formulated by solution casting from poly(L-lactide-co-glycolide) and poly(glycolide-co-ε-caprolactone). The following methods were used: NMR, GPC, DSC, FTIR, AFM, UV-VIS, and a viability and proliferation assay for idarubicin action (U87MG cell line). RESULTS Wafers showed a surface with numerous immersions and hills. A lack of interactions between idarubicin and the copolymers was observed. The substance was entrapped in the matrix and released in two phases for all wafers with the appropriate bolus and maintenance dose. The burst effect was observed for all wafers, however, the biggest bolus for poly(L-lactide-co-glycolide) wafers containing 5% w/w of idarubicin was noted. The stable and steady degradation of poly(glycolide-co-ε-caprolactone) wafers containing 5% w/w of idarubicin ensures the most optimal release profile and high inhibition of proliferation. CONCLUSIONS Copolymer wafers with idarubicin are an interesting proposition with great potential for the local treatment of glioblastoma multiforme. The release rate and dose may be regulated by the amount and kind of wafers for various effects.
Collapse
Affiliation(s)
- Artur Turek
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Chair and Department of Biopharmacy, Jedności 8, 41-200, Katowice, Poland.
| | - Katarzyna Stoklosa
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Chair and Department of Biopharmacy, Jedności 8, 41-200, Katowice, Poland
| | - Aleksandra Borecka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 43, 41-819, Zabrze, Poland
| | - Monika Paul-Samojedny
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Chair and Department of Medical Genetics, Jedności 8, 41-200, Sosnowiec, Poland
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 43, 41-819, Zabrze, Poland
| | - Andrzej Marcinkowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 43, 41-819, Zabrze, Poland
| | - Janusz Kasperczyk
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Chair and Department of Biopharmacy, Jedności 8, 41-200, Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 43, 41-819, Zabrze, Poland
| |
Collapse
|
7
|
Jiang Z, Gong T, Wei H. CDKL5 promotes proliferation, migration, and chemotherapeutic drug resistance of glioma cells via activation of the PI3K/AKT signaling pathway. FEBS Open Bio 2020; 10:268-277. [PMID: 31858726 PMCID: PMC6996333 DOI: 10.1002/2211-5463.12780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gliomas, the most prevalent cancer in the central nervous system, are characterized by high morbidity and mortality, emphasizing the need to understand their etiology. Here, we report that cyclin-dependent kinase-like 5 (CDKL5) is highly expressed in gliomas, and CDKL5 overexpression promotes invasion, proliferation, migration and drug (β-lapachone) resistance of glioma cells. In vitro, CDKL5 overexpression enhanced invasion, growth and migration of glioma cells, and stimulated the phosphoinositide 3-kinase (PI3K)/AKT axis. Furthermore, CDKL5 overexpression in vivo promoted glioma proliferation, whereas CDKL5 knockdown had opposing effects. The effect of CDKL5 on drug resistance was eliminated if the PI3K/AKT axis was suppressed, and cisplatin combined with the PI3K/AKT suppressor XL147 remarkably prohibited proliferation in xenografts overexpressing CDKL5. Collectively, our findings suggest that CDKL5 acts through the PI3K/AKT axis in glioma cells, and indicate a possible role for CDKL5 in glioma therapy.
Collapse
Affiliation(s)
- Zhenfu Jiang
- Department of NeurosurgeryThe Second Hospital of Dalian Medical UniversityChina
| | - Tongtong Gong
- Department of NeurosurgeryDalian Medical UniversityChina
| | - Hong Wei
- Department of PathologyThe First Affiliated Hospital of Dalian Medical UniversityChina
| |
Collapse
|
8
|
Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, Genitori L, Sardi I. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int J Mol Sci 2018; 19:ijms19102879. [PMID: 30248992 PMCID: PMC6213072 DOI: 10.3390/ijms19102879] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022] Open
Abstract
For glioblastoma, the tumor microenvironment (TME) is pivotal to support tumor progression and therapeutic resistance. TME consists of several types of stromal, endothelial and immune cells, which are recruited by cancer stem cells (CSCs) to influence CSC phenotype and behavior. TME also promotes the establishment of specific conditions such as hypoxia and acidosis, which play a critical role in glioblastoma chemoresistance, interfering with angiogenesis, apoptosis, DNA repair, oxidative stress, immune escape, expression and activity of multi-drug resistance (MDR)-related genes. Finally, the blood brain barrier (BBB), which insulates the brain microenvironment from the blood, is strongly linked to the drug-resistant phenotype of glioblastoma, being a major physical and physiological hurdle for the delivery of chemotherapy agents into the brain. Here, we review the features of the glioblastoma microenvironment, focusing on their involvement in the phenomenon of chemoresistance; we also summarize recent advances in generating systems to modulate or bypass the BBB for drug delivery into the brain. Genetic aspects associated with glioblastoma chemoresistance and current immune-based strategies, such as checkpoint inhibitor therapy, are described too.
Collapse
Affiliation(s)
- Martina Da Ros
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Veronica De Gregorio
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Anna Lisa Iorio
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, 50139 Florence, Italy.
| | - Milena Guidi
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Maurizio de Martino
- Director Post Graduate Pediatric School University of Florence, Director Meyer Health Campus, Florence, 50139, Italy.
| | - Lorenzo Genitori
- Neurosurgery Unit, Department of Neurosciences, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Iacopo Sardi
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| |
Collapse
|