1
|
Reinoza J, Tiwari R, Morales I, Sotelo L, Sengupta D, Hernandez JP, Padilla V, Yallapu MM, Lozano K. Fabrication of pullulan-chitosan fiber membranes for enhanced hemostatic applications. Int J Biol Macromol 2025; 308:142552. [PMID: 40154712 DOI: 10.1016/j.ijbiomac.2025.142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Pullulan-based fibers blended with chitosan (Chi) were developed using a rotational spinning method for potential biomedical applications. Aqueous precursor formulations containing 15 % by weight in pullulan and varying Chi concentrations (6 % and 7 %) were optimized to produce nanofibers at elevated temperatures and rotational speeds exceeding 7 k rpm. The highest fiber production yields of approximately 90 % and 65 % were achieved at 13 k rpm for the 6 % and 7 % Chi formulations, respectively. The pullulan-chitosan fibers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic mechanical analyzer, powder X-ray diffraction, and rheological property measurements. Morphological analyses revealed nanometric fiber diameters and a decrease in bead formation with increasing rotational speeds. Thermal stability studies, conducted via thermogravimetric and differential thermal analyses, showed that the composite fibers exhibited intermediate degradation behaviors between their individual polymer components, indicating good integration of Chi into the pullulan matrix. Elemental analysis confirmed the successful incorporation of Chi into the fibers, with nitrogen content closely matching theoretical predictions. Functional assessments demonstrated the hemocompatibility of the Pull-Chi fibers with hemolysis rates below 1 %. Additionally, the fibers exhibited superior hemostatic potential, effectively promoting blood clotting in vitro testing. These findings underscore the promise of Pull-Chi fibers as multifunctional biomaterials for applications in wound healing and tissue engineering. Future studies involving animal models are warranted to validate their clinical potential.
Collapse
Affiliation(s)
- Jefferson Reinoza
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA
| | - Rahul Tiwari
- Division of Cancer immunology and Microbiology, South Texas Center of Excellence in Cancer Research, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley (UTRGV), McAllen, TX 78504, USA
| | - Isabela Morales
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA
| | - Luis Sotelo
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA
| | - Debabrata Sengupta
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA
| | - Juan Pablo Hernandez
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA
| | - Victoria Padilla
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA
| | - Murali M Yallapu
- Division of Cancer immunology and Microbiology, South Texas Center of Excellence in Cancer Research, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley (UTRGV), McAllen, TX 78504, USA.
| | - Karen Lozano
- Center for Nano Technology/College of Engineering and Computer Science, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78539, USA; Materials Science & Nanoengineering, Rice University, George R. Brown School of Engineering and Computing, Houston, TX 77005, USA.
| |
Collapse
|
2
|
Peng Z, Zhao T, Gao P, Zhang G, Wu X, Tian H, Qu M, Tan X, Zhang Y, Zhao X, Qi X. Tumor-Derived Extracellular Vesicles Enable Tumor Tropism Chemo-Genetherapy for Local Immune Activation in Triple-Negative Breast Cancer. ACS NANO 2024; 18:30943-30956. [PMID: 39474658 PMCID: PMC11562804 DOI: 10.1021/acsnano.3c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024]
Abstract
Triple-negative breast cancer (TNBC) is highly heterogeneous, lacks accessible therapeutic targets, and features an immunosuppressive tumor microenvironment (TME). Anthracycline-based chemotherapy remains the primary treatment method for TNBC, while the current popular immune checkpoint inhibitors persistently encounter therapeutic resistance. Therefore, there is an urgent need to explore combined therapeutic strategies to remodel the TME and improve the treatment response. Considering the highly specific homing ability of tumor cell-derived vesicles and the key role of the signal transduction and activation of the transcription factor 3 (STAT3) pathway in TNBC, we propose a synergistic therapeutic strategy that integrates gene therapy, chemotherapy, and immunotherapy based on STAT3 short interfering RNA (siSTAT3) and doxorubicin (DOX)-functionalized tumor-derived extracellular vesicles (TEVs) (siSTAT3-DOX@TEV). The in vitro and in vivo results demonstrate that siSTAT3-DOX@TEV target tumor tissues precisely, downregulate STAT3 expression, and synergistically and efficiently induce immunogenic death, thereby reversing the immunosuppressive TME. Moreover, mass cytometry and immunohistochemistry reveal the local immune activation effect of siSTAT3-DOX@TEV, with a significant increase in M1 macrophages, CD4+ T cells, and CD8+ T cells in tumor tissues. These results provide strong hints for the development of TEV-based chemo-gene therapeutic agents for TNBC treatment at the clinical level.
Collapse
Affiliation(s)
- Zaihui Peng
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tingting Zhao
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Pingping Gao
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guozhi Zhang
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiujuan Wu
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hao Tian
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Man Qu
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuanni Tan
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Zhang
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department
of Oncology, Southwest Hospital, Third Military
Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaowei Qi
- Department
of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
3
|
Souza A, Nobrega G, Neves LB, Barbosa F, Ribeiro J, Ferrera C, Lima RA. Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications. MICROMACHINES 2024; 15:1317. [PMID: 39597128 PMCID: PMC11596077 DOI: 10.3390/mi15111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments. PDMS microchannels are used in studies of blood cell deformation under confined conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also plays a critical role in fabricating arterial models from real medical images, including pathological conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in PDMS research. In addition to these applications, this review critically discusses PDMS properties, fabrication methods, and its expanding role in micro- and nanoscale flow studies.
Collapse
Affiliation(s)
- Andrews Souza
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CMEMS-Uminho—Center for Microelectromechanical Systems, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Glauco Nobrega
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Lucas B. Neves
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Filipe Barbosa
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
| | - João Ribeiro
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Conrado Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain;
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Rui A. Lima
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CEFT—Transport Phenomena Research Center, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Nimz JG, Rerkshanandana P, Kloypan C, Kalus U, Chaiwaree S, Pruß A, Georgieva R, Xiong Y, Bäumler H. Recognition mechanisms of hemoglobin particles by monocytes - CD163 may just be one. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:1028-1040. [PMID: 37915310 PMCID: PMC10616704 DOI: 10.3762/bjnano.14.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Hemoglobin-based oxygen carriers (HBOCs) as blood substitutes are one of the great hopes of modern transfusion and emergency medicine. After the major safety-relevant challenges of the last decades seem to be largely overcome, current developments have in common that they are affected by degradation and excretion at an early stage in test organisms. Several possible mechanisms that may be responsible for this are discussed in the literature. One of them is CD163, the receptor of the complex of haptoglobin (Hp) and hemoglobin (Hb). The receptor has been shown in various studies to have a direct affinity for Hb in the absence of Hp. Thus, it seems reasonable that CD163 could possibly also bind Hb within HBOCs and cause phagocytosis of the particles. In this work we investigated the role of CD163 in the uptake of our hemoglobin sub-micron particles (HbMPs) in monocytes and additionally screened for alternative ways of particle recognition by monocytes. In our experiments, blockade of CD163 by specific monoclonal antibodies proved to partly inhibit HbMP uptake by monocytes. It appears, however, that several other phagocytosis pathways for HbMPs might exist, independent of CD163 and also Hb.
Collapse
Affiliation(s)
- Jonathan-Gabriel Nimz
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Chiraphat Kloypan
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Clinical Immunology and Transfusion Sciences, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Saranya Chaiwaree
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pharmaceutical Technology and Biotechnology, Faculty of Pharmacy, Payap University, Chiang Mai, Thailand
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Hu P, Lei Q, Duan S, Fu Y, Pan H, Chang C, Zheng Z, Wu Y, Zhang Z, Li R, Li YY, Ao N. In-situ formable dextran/chitosan-based hydrogels functionalized with collagen and EGF for diabetic wounds healing. BIOMATERIALS ADVANCES 2022; 136:212773. [PMID: 35929312 DOI: 10.1016/j.bioadv.2022.212773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
Delayed or non-healing skin wounds causing gangrene or even amputation, greatly threats diabetic patients lives. Herein, a bioactive, in-situ formable hydrogel based wound dressing was designed through simple Schiff base reaction. Oxidized dextran (OD) and carboxyethyl chitosan (CEC) were crosslinked together and applied as the main porous framework of hydrogel. To improve the mechanical strength and biocompatibility, collagen (Col) and EGF (Epidermal Growth Factor) were introduced into OD-CEC precursors: (1) after addition of only Col, the mechanical strength of hydrogels was improved by participating the functional -NH2 group of Col into the crosslinking process. Moreover, swelling ratio was as high as 750% on 3%OD-3%CEC-Col (water retention rate was 65 wt% after 7 days). (2) Once we introduced both Col and EGF into the OD-CEC hydrogel, the proliferation of mouse embryonic fibroblast (NIH 3T3) cells was promoted using 3%OD-3%CEC-Col/EGF, an accelerated wound healing was observed with 86% wound closure after only 14 operative days. Hematoxylin and eosin (H&E) staining and Masson staining indicated the synergy of Col and EGF might promote new tissue's formation, well collagen distributions and thus accelerate skin regeneration, presenting great potentials in wound healing of diabetic patients.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China; Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Qiqi Lei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China; Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Shuxia Duan
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China; Key Laboratory of Medical Protective Equipment, Henan Province, PR China
| | - Yingkun Fu
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China; Key Laboratory of Medical Protective Equipment, Henan Province, PR China
| | - Hongfu Pan
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Cong Chang
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Ziqi Zheng
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Yue Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China; Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Zhengnan Zhang
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China; Key Laboratory of Medical Protective Equipment, Henan Province, PR China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China.
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Peng Z, Zhang X, Yuan L, Li T, Chen Y, Tian H, Ma D, Deng J, Qi X, Yin X. Integrated endotoxin-adsorption and antibacterial properties of platelet-membrane-coated copper silicate hollow microspheres for wound healing. J Nanobiotechnology 2021; 19:383. [PMID: 34809612 PMCID: PMC8607565 DOI: 10.1186/s12951-021-01130-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serious infection caused by drug-resistant gram-negative bacteria and their secreted toxins (e.g., lipopolysaccharide) is a serious threat to human health. Thus, treatment strategies that efficiently kill bacteria and reducing the impact of their toxins simultaneously are urgently required. Herein, a novel antibacterial platform composed of a mesoporous copper silicate microsphere (CSO) core and a platelet membrane (PM) shell was prepared (CSO@PM). CSO@PM specifically targets bacteria owing to formyl peptide receptors on the PM and, combined with photothermal therapy (PTT), exhibits highly effective bacter icidal activity. Importantly, CSO@PM can adsorb lipopolysaccharide secreted by gram-negative bacteria, resulting in inflammation reduction. Thus, CSO@PM stimulates re-epithelialization and granulation-tissue formation, promoting wound healing. Moreover, this antibacterial platform exhibits no obvious toxicity at all the test concentrations in vitro and in vivo. Thus, CSO@PM exhibits a robust antibacterial effect and a strong toxin-adsorption capacity, facilitating the clinical treatment of many bacterial infections and the development of next-generation antibacterial nanoagents.
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ting Li
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dandan Ma
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
7
|
Function of Hemoglobin-Based Oxygen Carriers: Determination of Methemoglobin Content by Spectral Extinction Measurements. Int J Mol Sci 2021; 22:ijms22041753. [PMID: 33578723 PMCID: PMC7916497 DOI: 10.3390/ijms22041753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
Suspensions of hemoglobin microparticles (HbMPs) are promising tools as oxygen therapeutics. For the approval of clinical studies extensive characterization of these HbMPs with a size of about 750 nm is required regarding physical properties, function, pharmaco-kinetics and toxicology. The standard absorbance measurements in blood gas analyzers require dissolution of red blood cells which does not work for HbMP. Therefore, we have developed a robust and rapid optical method for the quality and functionality control of HbMPs. It allows simultaneous determination of the portion of the two states of hemoglobin oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) as well as the content of methemoglobin (metHb). Based on the measurement of collimated transmission spectra between 300 nm and 800 nm, the average extinction cross section of HbMPs is derived. A numerical method is applied to determine the composition of the HbMPs based on their wavelength-dependent refractive index (RI), which is a superposition of the three different states of Hb. Thus, light-scattering properties, including extinction cross sections can be simulated for different compositions and sizes. By comparison to measured spectra, the relative concentrations of oxyHb, deoxyHb, metHb are accessible. For validation of the optically determined composition of the HbMPs, we used X-ray fluorescence spectrometry for the ratio of Fe(II) (oxyHb/deoxyHb) and Fe(III) (metHb). High accuracy density measurements served to access heme-free proteins, size was determined by dynamic light scattering and analytical centrifugation and the shape of the HbMPs was visualized by electron and atomic force microscopy.
Collapse
|
8
|
Bäumler H. Künstliche Sauerstofftransporter können mehr als Sauerstoff liefern. TRANSFUSIONSMEDIZIN 2020. [DOI: 10.1055/a-1119-1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungZum gegenwärtigen Zeitpunkt ist in der EU und den USA kein artifizieller Sauerstofftransporter zugelassen. Hämoglobin-basierte Sauerstoff-Carrier (HBOC) sind bereits seit Jahrzehnten Gegenstand wissenschaftlicher Untersuchungen. Ein wesentliches Hindernis bei der Zulassung war bisher der Anspruch der Entwickler, einen universell einsetzbaren Blutersatz zu produzieren. Die Beschränkung auf eine Indikation scheint erfolgversprechender zu sein. Der Ansatz, nicht nur Sauerstoff von der Lunge zum Gewebe, sondern auch der Abtransport von Kohlendioxid vom Gewebe zur Lunge zu transportieren, der effektiver als mit Erythrozyten durchgeführt werden kann, erscheint besonders attraktiv. Aufgrund vielversprechender präklinischer sowie klinischer Untersuchungen besteht die Hoffnung, dass in absehbarer Zeit auch in der EU künstliche Sauerstofftransporter für therapeutische Zwecke zur Verfügung stehen werden.
Collapse
Affiliation(s)
- Hans Bäumler
- Institut für Transfusionsmedizin, Charité – Universitätsmedizin Berlin, Berlin
| |
Collapse
|
9
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
10
|
Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. MICROMACHINES 2019; 10:mi10060414. [PMID: 31234335 PMCID: PMC6631852 DOI: 10.3390/mi10060414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Qifu Long
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Yuzhen Xu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Jiangwa Xing
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| |
Collapse
|