1
|
Wang X, Zhang Z, Cao X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol Ther 2024; 25:2322206. [PMID: 38436092 PMCID: PMC10913707 DOI: 10.1080/15384047.2024.2322206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Zhendong Zhang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Xiaolan Cao
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
2
|
Chai Y, Chen F, Li H, Sun X, Yang P, Xi Y. Mechanism of salidroside regulating autophagy based on network pharmacology and molecular docking. Anticancer Drugs 2024; 35:525-534. [PMID: 38502854 DOI: 10.1097/cad.0000000000001601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Salidroside is a natural product of phenols with a wide range of pharmacological functions, but whether it plays a role in regulating autophagy is unclear. We systematically investigated the regulatory effect and molecular mechanism of salidroside on autophagy through network pharmacology, which provided a theoretical basis for subsequent experimental research. First, the target genes of salidroside were obtained using the Chinese Medicine System Pharmacology Database and Analysis Platform, and the target genes were converted into standardized gene names using the Uniprot website. At the same time, autophagy-related genes were collected from GeneCards, and preliminary handling of data to obtain intersecting genes. Then, the String website was used to construct a protein-protein interaction network, and to perform the Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. To observe the specific molecular mechanism by which salidroside regulates autophagy, we constructed a drug component-target genes-autophagy network. Finally, we performed molecular docking to verify the possible binding conformation between salidroside and the candidate target. By searching the database and analyzing the data, we found that 113 target genes in salidroside interact with autophagy. Salidroside regulate autophagy in relation to a number of important oncogenes and signaling pathways. Molecular docking confirmed that salidroside has high affinity with mTOR, SIRT1, and AKT1. Through network pharmacology combined with molecular docking-validated research methods, we revealed the underlying mechanism of salidroside regulation of autophagy. This study not only provides new systematic insights into the underlying mechanism of salidroside in autophagy, but also provides new ideas for network approaches for autophagy-related research.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University
- Department of Obstetrics and Gynaecology
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University
| | - Panpan Yang
- The First Clinical Medical College of Lanzhou University
- Department of Obstetrics and Gynaecology
| | - YaMing Xi
- The First Clinical Medical College of Lanzhou University
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Yang P, Chai Y, Wei M, Ge Y, Xu F. Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking. Sci Rep 2023; 13:14114. [PMID: 37644107 PMCID: PMC10465614 DOI: 10.1038/s41598-023-41157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Salidroside is a natural product of phenols, which has a wide scape of pharmacological effects, but its pharmacological effects and molecular mechanism on endometrial cancer are not clear. To systematically explore the pharmacological effects and molecular mechanisms of salidroside on endometrial cancer through the method of network pharmacology. The possible target genes of salidroside were obtained through different pharmacological databases and analysis platforms, and then the relevant target genes of endometrial cancer were obtained through the GeneCards website, and the target genes were uniformly converted into standardized gene names with Uniprot. The collected data were then processed to obtain common target genes and further analyzed through the String website to construct a protein-protein interaction (PPI) network, followed by gene ontology (GO) functional annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis. We further interpreted the molecular mechanism of salidroside for the treatment of endometrial cancer by constructing a "drug component-target gene-disease" network. Finally, we performed molecular docking to validate the binding conformation between salidroside and the candidate target genes. There were 175 target genes of salidroside after normalization, among which 113 target genes interacted with endometrial cancer. GO analysis indicated that the anti-endometrial cancer effect of salidroside may be strongly related to biological processes such as apoptosis and response to drug. KEGG analysis indicated that its mechanism may be related to pathway in cancer and PI3K-AKT signaling pathway. Molecular docking showed that salidroside had high affinity with five key genes. Based on the novel network pharmacology and molecular docking validation research methods, we have revealed for the first time the potential mechanism of salidroside in the therapy of endometrial cancer.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Min Wei
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yan Ge
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feixue Xu
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
4
|
Sęczyk Ł, Sugier D, Dervişoğlu G, Özdemir FA, Kołodziej B. Phytochemical profile, in vitro bioaccessibility, and anticancer potential of golden root (Rhodiola rosea L.) extracts. Food Chem 2023; 404:134779. [DOI: 10.1016/j.foodchem.2022.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
|
5
|
Chai Y, Chen F, Li Z, Yang P, Zhou Q, Liu W, Xi Y. Mechanism of salidroside in the treatment of chronic myeloid leukemia based on the network pharmacology and molecular docking. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:384-395. [PMID: 36369630 DOI: 10.1007/s12094-022-02990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Salidroside is a phenolic natural product, which is a kind of Rhodiola rosea. It has been confirmed that it has inhibitory effects on chronic myeloid leukemia, but the specific performance of its molecular effects is still unclear. OBJECTIVE To systematically study the pharmacological mechanism of salidroside on chronic myeloid leukemia by means of network pharmacology. METHODS First, the possible target genes of salidroside were predicted through the Traditional Chinese Medicine Pharmacology Database and Analysis Platform, the target gene names were converted into standardized gene names using the Uniprot website. At the same time, the related target genes of chronic myeloid leukemia were collected from GeneCards and DisGenet; Collect summary data and screen for commonly targeted genes. Then, the above-mentioned intersected genes were imported into the String website to construct the protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. To investigate the overall pharmacological effects of salidroside on chronic myeloid leukemia, we constructed a drug component-target gene-disease (CTD) network. Finally, molecular docking was performed to verify the possible binding conformation between salidroside and the candidate target. RESULTS A total of 126 salidroside target genes were retrieved, and 106 of them had interactions with chronic myeloid leukemia. The pharmacological effects of salidroside on chronic myeloid leukemia are related to some important oncogenes and signaling pathways. Molecular docking studies confirmed that the main role of salidroside binding to the target genes is hydrogen bonding. CONCLUSIONS We revealed the potential mechanism of action of salidroside against chronic myeloid leukemia, verified by network pharmacology combined with molecular docking. However, salidroside is a promising drug for the prevention and treatment of chronic myeloid leukemia, and further research is needed to prove it.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Panpan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China. .,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
6
|
Jin M, Wang C, Xu Y, Zhang Z, Wu X, Ye R, Zhang Q, Han D. Pharmacological effects of salidroside on central nervous system diseases. Biomed Pharmacother 2022; 156:113746. [DOI: 10.1016/j.biopha.2022.113746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
|
7
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
8
|
Hao Y, Li Z, Chang M, Zhang X. Effects of Salidroside Combined with Paclitaxel on Proliferation, Migration, and Epithelial Mesenchyme of Colorectal Cancer Cells. Drug Des Devel Ther 2022; 16:4079-4089. [PMID: 36465266 PMCID: PMC9716943 DOI: 10.2147/dddt.s384151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/16/2022] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a multifactorial disease and one of the most common malignancies worldwide. Salidroside (Sal) is a plant with a wide range of pharmacological effects and plays an important role in the treatment of many diseases, and is considered a new hope for the treatment of tumors. The purpose of this study was to investigate the effect of the combination of Sal and paclitaxel (Pac) on colorectal cancer cells and its mechanism of action. METHODS The effects of different mass concentrations of Sal, Pac, and the combination intervened in the cells for 48 h were examined using the CCK8 method. The inhibition rate was obtained, and the optimal concentration of the respective drug group was screened. The proliferative capacity of the respective group was obtained. Subsequently, the results of apoptosis, cloning, migration, invasion, and angiogenesis were observed through cell morphological analysis (shape observation and Hoechst staining), colony formation assay, cell scratching assay, Transwell, angiogenesis assay, and protein immunoblotting (Western blotting) to detect the expression of epithelial-mesenchymal transition (EMT)-associated proteins and PI3K pathway-associated proteins. RESULTS Different concentrations of Sal, Pac, and the combined application had significant effects in inhibiting cells in a concentration-dependent manner. Compared with the control group, the Sal group, the Pac group, and the combination group significantly inhibited the clonal number, migration, invasion, and tube-forming ability of colorectal cancer cells. Besides, the combined application had a better effect than the Sal and Pac groups. The apoptosis level was up-regulated in all drug groups, and the up-regulation was more significant in the combination group. The expression of E-cad protein was up-regulated, the expression of N-cad and Vim protein was down-regulated, and the expression of PI3K and AKT phosphorylation was down-regulated in the respective group, and the difference was more significant in the combination group compared with the group of individual drugs. CONCLUSION The combined application of Sal and Pac significantly can decrease the survival rate of colorectal cancer cells, and the mechanism may be correlated with the blocking of the PI3K/AKT pathway, thus inhibiting EMT.
Collapse
Affiliation(s)
- Yanjiao Hao
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| | - Zhiyu Li
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| | - Mingzhi Chang
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| | - Xiaoli Zhang
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| |
Collapse
|
9
|
Wang X, Qian J, Meng Y, Wang P, Cheng R, Zhou G, Zhu S, Liu C. Salidroside alleviates severe acute pancreatitis-triggered pancreatic injury and inflammation by regulating miR-217-5p/YAF2 axis. Int Immunopharmacol 2022; 111:109123. [PMID: 35963157 DOI: 10.1016/j.intimp.2022.109123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our previous studies have shown that salidroside (Sal) exerted a protective effect in severe acute pancreatitis (SAP) via inhibiting the inflammatory response. However, the molecular mechanism has not been fully elucidated. METHODS Using SAP rat model and miRNA microarray, the effect of Sal on miRNA expression profiling was determined and then validated their changes by quantitative Real-time PCR (qRT-PCR). Then, SAP cell model, enzyme-linked immunosorbent assay (ELISA) and Cell Counting Kit-8 (CCK-8) assay were used to explore the biological function of miR-217-5p in vitro. Bioinformatics analysis, luciferase reporter assay and miRNA pulldown assay were performed to investigate the underlying mechanism of miR-217-5p in the protection of Sal against SAP. RESULTS Compared with SAP group, 21 differentially expressed miRNAs were identified in SAP + Sal group. The target genes of these miRNAs were strongly associated with regulation of transcription, Axon guidance, Pathways in cancer and MAPK signaling pathway. Among these miRNAs, miR-217-5p was the most downregulated miRNA. Sal treatment alleviated cell injury and reduced the production of pro-inflammatory cytokines. Whereas overexpression of miR-217-5p reversed the effects of Sal. We identified YY1 associated factor 2 (YAF2) as a direct target gene of miR-217-5p and Sal treatment could upregulate YAF2 expression via targeting miR-217-5p. Furthermore, knockdown of YAF2 counteracted Sal-induced alleviation of cell injury and inflammation. Moreover, Sal could suppress the activation of p38 MAPK pathway by regulating miR-217-5p/YAF2 axis. CONCLUSIONS Our findings for the first time highlighted that Sal alleviated pancreatic injury and inhibited inflammation by regulating miR-217-5p/YAF2 axis, which might provide new therapeutic strategies for SAP treatment.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China.
| | - Jing Qian
- Department of General Surgery, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China
| | - Yun Meng
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China
| | - Ping Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China
| | - Ruizhi Cheng
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center of Nantong University, Nantong 226001, Jiangsu, China
| | - Chun Liu
- Laboratory Animal Center of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
10
|
Chen D, Luo C. Salidroside inhibits chronic myeloid leukemia cell proliferation and induces apoptosis by regulating the miR-140-5p/wnt5a/β-catenin axis. Exp Ther Med 2021; 22:1249. [PMID: 34539845 PMCID: PMC8438695 DOI: 10.3892/etm.2021.10684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Salidroside, an active ingredient of Rhodiola rosea, exhibits antitumor effects in various types of cancer. However, the role of salidroside in chronic myeloid leukemia (CML) has not been elucidated. In the presents study, cell viability was assessed by CCK-8 assay, while apoptosis was detected by flow cytometry. Reverse transcription-quantitative PCR analysis was used to examine the expression levels of miR-140-5p in human CML cell lines. The expression levels of apoptosis and cell cycle-associated proteins and of the wnt5a/β-catenin signaling pathway were determined by western blot analysis. Bioinformatic analysis and luciferase reporter assays were employed to investigate the association between miR-140-5p and wnt5a. The results revealed that exposure of CML cells to salidroside (80 µM) inhibited cell proliferation and promoted apoptosis. In addition, salidroside treatment led to the upregulation of miR-140-5p expression. Furthermore, the inhibition of wnt5a/β-catenin signaling pathway and the pro-apoptotic effects induced by salidroside were attenuated by miR-140-5p silencing. Notably, wnt5a was revealed to be a direct target of miR-140-5p. The present findings indicated that salidroside exerted anti-CML effects through regulating miR-140-5p by suppressing the wnt5a/β-catenin signaling pathway. The present study provided evidence of the therapeutic role of salidroside in CML.
Collapse
Affiliation(s)
- Danjun Chen
- Department of Pharmacy, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cong Luo
- Department of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
11
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
12
|
Wang J, Lv W, Lin Z, Wang X, Bu J, Su Y. Hsa_circ_0003159 inhibits gastric cancer progression by regulating miR-223-3p/NDRG1 axis. Cancer Cell Int 2020; 20:57. [PMID: 32099530 PMCID: PMC7031989 DOI: 10.1186/s12935-020-1119-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background Abnormally expressed circular RNAs (circRNAs) are implicated in the development and treatment of gastric cancer (GC). Previous study has reported that hsa_circ_0003159 is expressed in GC. However, the role and mechanism of hsa_circ_0003159 in GC progression remain unclear. Methods GC tissues and normal tissues were harvested from 55 patients in this study. The levels of hsa_circ_0003159, microRNA (miR)-223-3p and N-myc downstream regulated gene 1 (NDRG1) were measured by quantitative real-time polymerase chain reaction or western blot. Cell proliferation, migration, invasion and apoptosis were determined by cell counting kit (CCK)-8, transwell assay, flow cytometry and western blot, respectively. The target association of miR-223-3p-hsa_circ_0003159 and miR-223-3p-NDRG1 was explored by dual-luciferase reporter assay. Xenograft model was established to assess the roles of hsa_circ_0003159 in GC in vivo. Results Hsa_circ_0003159 was lowly expressed in GC tissues and cells and mainly presented in the cytoplasm. Low expression of hsa_circ_0003159 was associated with lower overall survival and disease-free survival. Hsa_circ_0003159 overexpression inhibited proliferation, migration and invasion but induced apoptosis in GC cells. MiR-223-3p was a target of hsa_circ_0003159 and abated the effect of hsa_circ_0003159 on proliferation, migration, invasion and apoptosis in GC cells. Hsa_circ_0003159 promoted NDRG1 expression by competitively sponging miR-223-3p. Knockdown of NDRG1 reversed the suppressive effect of hsa_circ_0003159 on GC progression. Besides, hsa_circ_0003159 decreased GC cell xenograft tumor growth by regulating miR-223-3p and NDRG1. Conclusion Hsa_circ_0003159 suppressed proliferation, migration, invasion and xenograft tumor growth but promoted apoptosis by decreasing miR-223-3p and increasing NDRG1 in GC, indicating a novel target for treatment of GC.
Collapse
Affiliation(s)
- Jingyu Wang
- 1Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, East Meihua Road, Zhuhai, 519000 Guangdong China
| | - Weize Lv
- 2Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhidong Lin
- 3Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao Wang
- 1Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, East Meihua Road, Zhuhai, 519000 Guangdong China
| | - Juyuan Bu
- 1Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, East Meihua Road, Zhuhai, 519000 Guangdong China
| | - Yonghui Su
- 1Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, East Meihua Road, Zhuhai, 519000 Guangdong China
| |
Collapse
|
13
|
Pu WL, Zhang MY, Bai RY, Sun LK, Li WH, Yu YL, Zhang Y, Song L, Wang ZX, Peng YF, Shi H, Zhou K, Li TX. Anti-inflammatory effects of Rhodiola rosea L.: A review. Biomed Pharmacother 2019; 121:109552. [PMID: 31715370 DOI: 10.1016/j.biopha.2019.109552] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Rhodiola rosea L., a worldwide botanical adaptogen, has been confirmed to possess protective effects of inflammatory injury for many diseases, including cardiovascular diseases, neurodegenerative diseases, diabetes, sepsis, and cancer. This paper is to review the recent clinical and experimental researches about the anti-inflammatory effects and the related mechanisms of Rhodiola rosea L. extracts, preparations, and the active compounds. From the collected information reviewed, this paper will provide the theoretical basis for its clinical application, and provide the evidences or guidance for future studies and medicinal exploitations of Rhodiola rosea L.
Collapse
Affiliation(s)
- Wei-Ling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China
| | - Meng-Ying Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine,Tianjin 301617, China
| | - Ru-Yu Bai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine,Tianjin 301617, China
| | - Li-Kang Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine,Tianjin 301617, China.
| | - Wen-Hua Li
- College of Medicine, Xizang Minzu University (Tibetan National University), Xianyang 712082, Shaanxi, China.
| | - Ying-Li Yu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China
| | - Zhao-Xin Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine,Tianjin 301617, China
| | - Hong Shi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional ChineseMedicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University ofTraditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tian-Xiang Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|