1
|
Jeganathan A, Arunachalam K, Byju A, Rani George A, Sajeev S, Thangasamy K, Natesan G. Chitosan Nanoparticle-Mediated Delivery of Alstonia venenata R.Br. Root Methanolic Extract: A Promising Strategy for Breast Cancer Therapy in DMBA-Induced Breast Cancer in Sprague Dawley Rats. Antioxidants (Basel) 2024; 13:1513. [PMID: 39765841 PMCID: PMC11673636 DOI: 10.3390/antiox13121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Alstonia venenata R.Br., a plant native to the Western Ghats, is recognized for its diverse medicinal properties. The plant's extracts, particularly rich in alkaloids and other bioactive compounds, have shown potential anticancer activity. This study investigates the therapeutic potential of chitosan nanoparticles (CNPs) loaded with the root methanolic extract (RME) of A. venenata in combating breast cancer induced by dimethylbenz(a)anthracene (DMBA) in female Sprague Dawley rats. The RME-loaded chitosan nanoparticles (RME-EnCNPs) were synthesized and characterized, and their in vivo efficacy was evaluated. Treatment with RME-EnCNPs significantly inhibited tumor progression, which is evidenced by reduced tumor volume, burden, and incidence. Moreover, the nanoparticles demonstrated a sustained release of the active compounds, leading to marked improvements in various biochemical, enzymatic, and histopathological parameters. The study found that both RME and RME-EnCNPs effectively suppressed tumor growth, with RME-EnCNPs showing superior efficacy in modulating tumor progression. Antioxidant assays revealed that treatment with RME-EnCNPs (500 mg/kg) resulted in significant increases in total protein, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) levels, alongside a marked reduction in lipid peroxidation (LPO) (p < 0.001). These findings suggest that RME-EnCNPs exert a potent antioxidant effect, mitigating oxidative stress within the tumor microenvironment. The root extract of A. venenata and its nanoparticle formulation hold promise as a potential therapeutic agent for breast cancer, warranting further investigation to isolate active bioactive compounds and elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Aarthi Jeganathan
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cellular Therapy and Toxicological Genetics (CeTroGen), Faculty of Medicine (FAMED), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Anju Byju
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Anju Rani George
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Sradha Sajeev
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Kavimani Thangasamy
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Geetha Natesan
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| |
Collapse
|
2
|
Ouahhoud S, Bencheikh N, Khoulati A, Kadda S, Mamri S, Ziani A, Baddaoui S, Eddabbeh FE, Elassri S, Lahmass I, Benabbes R, Addi M, Hano C, Choukri M, Bennani A, Asehraou A, Saalaoui E. Crocus sativus L. Stigmas, Tepals, and Leaves Ameliorate Gentamicin-Induced Renal Toxicity: A Biochemical and Histopathological Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7127037. [PMID: 36217433 PMCID: PMC9547688 DOI: 10.1155/2022/7127037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
The most costly spice in the world, Crocus sativus L. (C. sativus), has been used for more than 3,000 years. It has various beneficial applications in a range of fields, including aromas, colorants, and medications, but its usefulness as a food flavoring and coloring ingredient is the highest. Large quantities of by-products from the processing of saffron are typically thrown as unwanted bio-residues. This study's goal was to assess and compare the nephroprotective effects of hydroethanolic extracts of C. sativus stigmas, tepals, and leaves on gentamicin (GM)-induced nephrotoxicity in rats. For that, we used a biochemical and histological investigation to propose new pharmaceutical valorizations. Based on the biochemical and histological analyses, it is concluded that all the studied parts of C sativus showed a renoprotective effect. Markedly, tepals revealed the most significant reduction of relative liver weight (p < 0.05), water intake (p < 0.05), plasma creatinine (p < 0.01), plasma urea (p < 0.01), plasma uric acid (p < 0.05), urinary protein (p < 0.01) and albumin (p < 0.001), and renal malondialdehyde (MDA) (p < 0.001). In addition, C. sativus tepals caused a significant increase in body weight (p < 0.05), urinary creatinine (p < 0.01), creatinine clearance (p < 0.05), and urinary urea (p < 0.05) compared with the gentamicin untreated (GM) group. This is confirmed by the histopathological study which shows that treatment with stigmas, tepals, and leaves preserved kidney morphology at the glomerular and tubular cell level. The studied extracts exhibit good recovery potential for nephrotoxicity induced by gentamicin. In order to create potent dietary supplements or phytomedicines, it would also be very interesting to confirm these actions through clinical research.
Collapse
Affiliation(s)
- Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Amine Khoulati
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Salma Kadda
- Laboratory of Improvement of Agricultural Production, Biotechnology, and Environment, Department of Biology, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Samira Mamri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Anas Ziani
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Sanae Baddaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Fatima-Ezzahra Eddabbeh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Soufiane Elassri
- Central Laboratory Service - CHU, Mohammed VI, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Iliass Lahmass
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Science Dhar Mahraz, Sidi Mohamed Ben Abdallah University, Fez 1796, Morocco
| | - Redouane Benabbes
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratory of Improvement of Agricultural Production, Biotechnology, and Environment, Department of Biology, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, Orléans 45067, France
| | - Mohammed Choukri
- Central Laboratory Service - CHU, Mohammed VI, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Amal Bennani
- Central Laboratory Service - CHU, Mohammed VI, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| |
Collapse
|
3
|
Assortment of kaempferol and zinc gluconate improves noise-induced biochemical imbalance and deficits in body weight gain. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2021.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
This study investigated the effects of pretreatment with antioxidants, kaempferol, and zinc gluconate on serum biochemical changes and impairment in body weight gain following noise-exposure in Wistar rats. Thirty-five animals were evenly grouped into five cohorts: Groups II, III, IV, and V were exposed to noise stress, induced by exposing rats to 100 dB (4 hr/day) for 15 days, from days 33 to 48 after starting the drug treatments. Treatment with kaempferol and/or zinc mitigated noise-induced deficits in body weight gain, and levels of serum lipid and protein fractions. The combined treatment significantly (p < .05) decreased malondialdehyde concentration in kaempferol + zinc gluconate treated group, compared to the group administered deionized water + noise. This result demonstrates that biochemical dyshomeostasis and lipid peroxidation may be involved in the molecular mechanism underlying noise stress and the assortment of kaempferol and zinc gluconate produced an improved mitigating outcome in Wistar rats.
Collapse
|
4
|
Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem 2021:1-14. [PMID: 33625930 DOI: 10.1080/13813455.2021.1890129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study examined the protective effect of Kaempferol against streptozotocin-induced diabetic nephropathy (DN) in rats and studies the underlying mechanisms. Rats were divided into 4 groups as control, control + Kaempferol, STZ, and STZ + Kaempferol. All treatments were conducted for 8 weeks daily after the induction of diabetes. Kaempferol prevented STZ-induced weight and food loss and attenuated renal damage and the alterations in all biochemical related parameters. Concomitantly, Kaempferol reduced renal levels of TNF-α and IL-6, cleaved caspase-3, p38, and Bax, suppressing JNK phosphorylation and NF-κB p65 transactivation, and upregulation of Bcl-2. In both control and STZ-diabetic rats, Kaempferol reduced fasting glucose levels, increased fasting insulin levels and HOMA-β, reduced the levels of ROS and MDA, stimulated SOD and GSH levels, and increased the expression of Nrf2 and HO-1. In conclusion, Kaempferol prevents STZ-induced diabetic nephropathy, mainly, by antioxidant potential, mediated by the upregulation of the Nrf-2/HO-1 axis.
Collapse
Affiliation(s)
- Ali S Alshehri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|