1
|
Mitsukawa K, Terada M, Yamada R, Monjo T, Hiyoshi T, Nakakariya M, Kajita Y, Ando T, Koike T, Kimura H. TAK-861, a potent, orally available orexin receptor 2-selective agonist, produces wakefulness in monkeys and improves narcolepsy-like phenotypes in mouse models. Sci Rep 2024; 14:20838. [PMID: 39242684 PMCID: PMC11379823 DOI: 10.1038/s41598-024-70594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Narcolepsy type 1 (NT1) is associated with severe loss of orexin neurons and characterized by symptoms including excessive daytime sleepiness and cataplexy. Current medications indicated for NT1 often show limited efficacy, not addressing the full spectrum of symptoms, demonstrating a need for novel drugs. We discovered a parenteral orexin receptor 2 (OX2R) agonist, danavorexton, and an orally available OX2R agonist, TAK-994; both improving NT1 phenotypes in mouse models and individuals with NT1. However, danavorexton has limited oral availability and TAK-994 has a risk of off-target liver toxicity. To avoid off-target-based adverse events, a highly potent molecule with low effective dose is preferred. Here, we show that a novel OX2R-selective agonist, TAK-861 [N-{(2S,3R)-4,4-Difluoro-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3',5'-trifluoro[1,1'-biphenyl]-3-yl)methyl]pyrrolidin-3-yl}ethanesulfonamide], activates OX2R with a half-maximal effective concentration of 2.5 nM and promotes wakefulness at 1 mg/kg in mice and monkeys, suggesting ~ tenfold higher potency and lower effective dosage than TAK-994. Similar to TAK-994, TAK-861 substantially ameliorates wakefulness fragmentation and cataplexy-like episodes in orexin/ataxin-3 and orexin-tTA;TetO DTA mice (NT1 mouse models). Compared with modafinil, TAK-861 induces highly correlated brain-wide neuronal activation in orexin-tTA;TetO DTA mice, suggesting efficient wake-promoting effects. Thus, TAK-861 has potential as an effective treatment for individuals with hypersomnia disorders including narcolepsy, potentially with a favorable safety profile.
Collapse
Affiliation(s)
- Kayo Mitsukawa
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Michiko Terada
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryuji Yamada
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Taku Monjo
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tetsuaki Hiyoshi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuichi Kajita
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuya Ando
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
2
|
Zhang J, Jin K, Chen B, Cheng S, Jin J, Yang X, Lu J, Song Q. Sex-dimorphic functions of orexin in neuropsychiatric disorders. Heliyon 2024; 10:e36402. [PMID: 39253145 PMCID: PMC11382083 DOI: 10.1016/j.heliyon.2024.e36402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The orexin system regulates a variety of physiological functions, including the sleep-wake cycle, addiction, foraging behavior, stress and cognitive functioning. Orexin levels in central and peripheral are related to the pathogenesis of many diseases, most notably the narcolepsy, eating disorders, stress-related psychiatric disorders, and neurodegenerative diseases. Recently, it has been reported that the orexin system is distinctly sexually dimorphic, and is strongly associated with neuropsychiatric disorders. In this review, we analyzed advancements in the sex differences in the orexin system and their connection to psychoneurological conditions. Considering the scarcity of research in this domain, more research is imperative to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jinghan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Shangping Cheng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jinfan Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xiaolan Yang
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| |
Collapse
|
3
|
Kaneko T, Oura A, Imai Y, Kusumoto-Yoshida I, Kanekura T, Okuno H, Kuwaki T, Kashiwadani H. Orexin neurons play contrasting roles in itch and pain neural processing via projecting to the periaqueductal gray. Commun Biol 2024; 7:290. [PMID: 38459114 PMCID: PMC10923787 DOI: 10.1038/s42003-024-05997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Pain and itch are recognized as antagonistically regulated sensations; pain suppresses itch, whilst pain inhibition enhances itch. The neural mechanisms at the central nervous system (CNS) underlying these pain-itch interactions still need to be explored. Here, we revealed the contrasting role of orexin-producing neurons (ORX neurons) in the lateral hypothalamus (LH), which suppresses pain while enhancing itch neural processing, by applying optogenetics to the acute pruritus and pain model. We also revealed that the circuit of ORX neurons from LH to periaqueductal gray regions served in the contrasting modulation of itch and pain processing using optogenetic terminal inhibition techniques. Additionally, by using an atopic dermatitis model, we confirmed the involvement of ORX neurons in regulating chronic itch processing, which could lead to a novel therapeutic target for persistent pruritus in clinical settings. Our findings provide new insight into the mechanism of antagonistic regulation between pain and itch in the CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Asuka Oura
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiki Imai
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Okuno
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
4
|
Sun Y, Tisdale RK, Yamashita A, Kilduff TS. Peripheral vs. core body temperature as hypocretin/orexin neurons degenerate: Exercise mitigates increased heat loss. Peptides 2023; 164:171002. [PMID: 36963505 PMCID: PMC10337601 DOI: 10.1016/j.peptides.2023.171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Hypocretins/Orexins (Hcrt/Ox) are hypothalamic neuropeptides implicated in diverse functions, including body temperature regulation through modulation of sympathetic vasoconstrictor tone. In the current study, we measured subcutaneous (Tsc) and core (Tb) body temperature as well as activity in a conditional transgenic mouse strain that allows the inducible ablation of Hcrt/Ox-containing neurons by removal of doxycycline (DOX) from their diet (orexin-DTA mice). Measurements were made during a baseline, when mice were being maintained on food containing DOX, and over 42 days while the mice were fed normal chow which resulted in Hcrt/Ox neuron degeneration. The home cages of the orexin-DTA mice were equipped with running wheels that were either locked or unlocked. In the presence of a locked running wheel, Tsc progressively decreased on days 28 and 42 in the DOX(-) condition, primarily during the dark phase (the major active period for rodents). This nocturnal reduction in Tsc was mitigated when mice had access to unlocked running wheels. In contrast to Tsc, Tb was largely maintained until day 42 in the DOX(-) condition even when the running wheel was locked. Acute changes in both Tsc and Tb were observed preceding, during, and following cataplexy. Our results suggest that ablation of Hcrt/Ox-containing neurons results in elevated heat loss, likely through reduced sympathetic vasoconstrictor tone, and that exercise may have some therapeutic benefit to patients with narcolepsy, a disorder caused by Hcrt/Ox deficiency. Acute changes in body temperature may facilitate prediction of cataplexy onset and lead to interventions to mitigate its occurrence.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | - Ryan K Tisdale
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Akira Yamashita
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA; Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Thomas S Kilduff
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
5
|
Kaneko T, Kuwaki T. The opposite roles of orexin neurons in pain and itch neural processing. Peptides 2023; 160:170928. [PMID: 36566840 DOI: 10.1016/j.peptides.2022.170928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Pain and itch are antagonistically regulated sensations; pain suppresses itch, and inhibition of pain enhances itch. Understanding the central neural circuit of antagonistic regulation between pain and itch is required to develop new therapeutics better to manage these two feelings in a clinical situation. However, evidence of the neural mechanism underlying the pain-itch interaction in the central nervous system (CNS) is still insufficient. To pave the way for this research area, our laboratory has focused on orexin (ORX) producing neurons in the hypothalamus, which is known as a master switch that induces various defense responses when animals face a stressful environment. This review article summarized the previous evidence and our latest findings to argue the neural regulation between pain and itch and the bidirectional roles of ORX neurons in processing these two sensations. i.e., pain relief and itch exacerbation. Further, we discussed the possible neural circuit mechanism for the opposite controlling of pain and itch by ORX neurons. Focusing on the roles of ORX neurons would provide a new perspective to understand the antagonistic regulation of pain and itch in CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
6
|
Core body temperature varies according to the time of exercise without affecting orexin-A production in the dorsolateral hypothalamus in rat. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Knez R, Niksic M, Omerovic E. Orexin/hypocretin system dysfunction in patients with Takotsubo syndrome: A novel pathophysiological explanation. Front Cardiovasc Med 2022; 9:1016369. [PMID: 36407467 PMCID: PMC9670121 DOI: 10.3389/fcvm.2022.1016369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Takotsubo syndrome (TTS) is an acute heart failure syndrome. Emotional or physical stressors are believed to precipitate TTS, while the pathophysiological mechanism is not yet completely understood. During the coronavirus disease (COVID-19) pandemic, an increased incidence of TTS has been reported in some countries; however, the precise pathophysiological mechanism for developing TTS with acute COVID-19 infection is unknown. Nevertheless, observing the symptoms of COVID-19 might lead to new perspectives in understanding TTS pathophysiology, as some of the symptoms of the COVID-19 infection could be assessed in the context of an orexin/hypocretin-system dysfunction. Orexin/hypocretin is a cardiorespiratory neuromodulator that acts on two orexin receptors widely distributed in the brain and peripheral tissues. In COVID-19 patients, autoantibodies against one of these orexin receptors have been reported. Orexin-system dysfunction affects a variety of systems in an organism. Here, we review the influence of orexin-system dysfunction on the cardiovascular system to propose its connection with TTS. We propose that orexin-system dysfunction is a potential novel explanation for the pathophysiology of TTS due to direct or indirect dynamics of orexin signaling, which could influence cardiac contractility. This is in line with the conceptualization of TTS as a cardiovascular syndrome rather than merely a cardiac abnormality or cardiomyopathy. To the best of our knowledge, this is the first publication to present a plausible connection between TTS and orexin-system dysfunction. We hope that this novel hypothesis will inspire comprehensive studies regarding orexin's role in TTS pathophysiology. Furthermore, confirmation of this plausible pathophysiological mechanism could contribute to the development of orexin-based therapeutics in the treatment and prevention of TTS.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Development, Department of Women's and Child Health, Skaraborg Hospital, Skövde, Sweden
- Institution for Health, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Milan Niksic
- Department of Cardiology, Skaraborg Hospital, Skövde, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
9
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
10
|
Kaneko T, Kuwaki T, Kashiwadani H. Hypothalamic orexinergic neurons modulate pain and itch in an opposite way: pain relief and itch exacerbation. J Physiol Sci 2022; 72:21. [PMID: 35996084 PMCID: PMC10717118 DOI: 10.1186/s12576-022-00846-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022]
Abstract
Pain and itch are recognized as antagonistic sensations; pain suppresses itch and inhibition of pain generates itch. There is still a lack of evidence about the neural mechanism of the interaction between pain and itch in the central nervous system. In this study, we focused on the orexin (ORX) neurons in the lateral hypothalamus (LH), which mediate various "defense responses" when animals confront stressors. We found that the scratching behaviors induced by the pruritogen were significantly suppressed in ORX-neuron-ablated (ORX-abl) mice. The exaggerated pain behavior and attenuated itch behavior observed in ORX-abl mice indicated that ORX neurons modulate pain and itch in an opposite way, i.e., pain relief and itch exacerbation. In addition, most of the ORX neurons responded to both pain and itch input. Our results suggest that ORX neurons inversely regulate pain- and itch-related behaviors, which could be understood as a defense response to cope with stress environment.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan.
| |
Collapse
|
11
|
Pizza F, Barateau L, Dauvilliers Y, Plazzi G. The orexin story, sleep and sleep disturbances. J Sleep Res 2022; 31:e13665. [PMID: 35698789 DOI: 10.1111/jsr.13665] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The orexins, also known as hypocretins, are two neuropeptides (orexin A and B or hypocretin 1 and 2) produced by a few thousand neurons located in the lateral hypothalamus that were independently discovered by two research groups in 1998. Those two peptides bind two receptors (orexin/hypocretin receptor 1 and receptor 2) that are widely distributed in the brain and involved in the central physiological regulation of sleep and wakefulness, orexin receptor 2 having the major role in the maintenance of arousal. They are also implicated in a multiplicity of other functions, such as reward seeking, energy balance, autonomic regulation and emotional behaviours. The destruction of orexin neurons is responsible for the sleep disorder narcolepsy with cataplexy (type 1) in humans, and a defect of orexin signalling also causes a narcoleptic phenotype in several animal species. Orexin discovery is unprecedented in the history of sleep research, and pharmacological manipulations of orexin may have multiple therapeutic applications. Several orexin receptor antagonists were recently developed as new drugs for insomnia, and orexin agonists may be the next-generation drugs for narcolepsy. Given the broad range of functions of the orexin system, these drugs might also be beneficial for treating various conditions other than sleep disorders in the near future.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Miyata K, Ikoma Y, Murata K, Kusumoto-Yoshida I, Kobayashi K, Kuwaki T, Ootsuka Y. Multifaceted roles of orexin neurons in mediating methamphetamine-induced changes in body temperature and heart rate. IBRO Neurosci Rep 2022; 12:108-120. [PMID: 35128515 PMCID: PMC8804267 DOI: 10.1016/j.ibneur.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
|
13
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
14
|
Fronczek R, Schinkelshoek M, Shan L, Lammers GJ. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:343-358. [PMID: 34225940 DOI: 10.1016/b978-0-12-820107-7.00021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypocretin-1 and 2 (or orexin A and B) are neuropeptides exclusively produced by a group of neurons in the lateral and dorsomedial hypothalamus that project throughout the brain. In accordance with this, the two different hypocretin receptors are also found throughout the brain. The hypocretin system is mainly involved in sleep-wake regulation, but also in reward mechanisms, food intake and metabolism, autonomic regulation including thermoregulation, and pain. The disorder most strongly linked to the hypocretin system is the primary sleep disorder narcolepsy type 1 caused by a lack of hypocretin signaling, which is most likely due to an autoimmune process targeting the hypocretin-producing neurons. However, the hypocretin system may also be affected, but to a lesser extent and less specifically, in various other neurological disorders. Examples are neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease, immune-mediated disorders such as multiple sclerosis, neuromyelitis optica, and anti-Ma2 encephalitis, and genetic disorders such as type 1 diabetus mellitus and Prader-Willi Syndrome. A partial hypocretin deficiency may contribute to the sleep features of these disorders.
Collapse
Affiliation(s)
- Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands.
| | - Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| |
Collapse
|
15
|
Kuwaki T. Orexin (hypocretin) participates in central autonomic regulation during fight-or-flight response. Peptides 2021; 139:170530. [PMID: 33741478 DOI: 10.1016/j.peptides.2021.170530] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
Our daily life does not only involve a calm resting state but is rather full of perturbations that induce active states such as moving, eating, and communicating. During such active conditions, cardiorespiratory regulation should be adjusted according to bodily demand, which differs from that during the resting state, by modulating or resetting the operating point. To explore neural mechanisms in the state-dependent adjustment of central autonomic regulation, my research group has recently focused on the fight-or-flight response because the stressor induces not only cognitive, emotional, and behavioral changes but also autonomic changes. In this brief review, I will summarize our discovery using orexin knockout mice and orexin neuron-ablated mice for the possible contribution of orexin, a hypothalamic neuropeptide, to the state-dependent adjustment of the central autonomic regulation. In addition, I will introduce some recent discovery using optogenetic manipulation of the orexin and related systems. The diversity of synaptic control of the cardiovascular and respiratory neurons appears necessary for animals to adapt themselves to ever-changing life circumstances and behavioral states. The orexin system is likely to function as one of the essential modulators for coordinating the circuits controlling autonomic functions and behaviors.
Collapse
Affiliation(s)
- Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan.
| |
Collapse
|
16
|
Berteotti C, Lo Martire V, Alvente S, Bastianini S, Matteoli G, Silvani A, Zoccoli G. Effect of ambient temperature on sleep breathing phenotype in mice: the role of orexins. J Exp Biol 2020; 223:jeb219485. [PMID: 32457059 DOI: 10.1242/jeb.219485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
Abstract
The loss of orexinergic neurons, which release orexins, results in narcolepsy. Orexins participate in the regulation of many physiological functions, and their role as wake-promoting molecules has been widely described. Less is known about the involvement of orexins in body temperature and respiratory regulation. The aim of this study was to investigate if orexin peptides modulate respiratory regulation as a function of ambient temperature (Ta) during different sleep stages. Respiratory phenotype of male orexin knockout (KO-ORX, N=9) and wild-type (WT, N=8) mice was studied at thermoneutrality (Ta=30°C) or during mild cold exposure (Ta=20°C) inside a whole-body plethysmography chamber. The states of wakefulness (W), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) were scored non-invasively, using a previously validated technique. In both WT and KO-ORX mice, Ta strongly and significantly affected ventilatory period and minute ventilation values during NREMS and REMS; moreover, the occurrence rate of sleep apneas in NREMS was significantly reduced at Ta=20°C compared with Ta=30°C. Overall, there were no differences in respiratory regulation during sleep between WT and KO-ORX mice, except for sigh occurrence rate, which was significantly increased at Ta=20°C compared with Ta=30°C in WT mice, but not in KO-ORX mice. These results do not support a main role for orexin peptides in the temperature-dependent modulation of respiratory regulation during sleep. However, we showed that the occurrence rate of sleep apneas critically depends on Ta, without any significant effect of orexin peptides.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, Sant'Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| |
Collapse
|
17
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020; 76:300-311. [PMID: 32594802 DOI: 10.1161/hypertensionaha.120.14521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension. The arterial baroreflex reduces arterial blood pressure variability and contributes to the arterial blood pressure set point. This set point can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla oblongata, and both are plausible causes of neurogenic hypertension. Sensory afferent dysfunction (reduced baroreceptor activity, increased renal, or carotid body afferent) contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, Ang II [angiotensin II]) or sodium. Leptin raises blood vessel sympathetic nerve activity by activating the carotid bodies and subsets of arcuate neurons. Ang II works in the lamina terminalis and probably throughout the brain stem and hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the excess sympathetic nerve activity is mediated to some extent by activation of presympathetic neurons located in the rostral ventrolateral medulla or the paraventricular nucleus of the hypothalamus. Increased activity of the orexinergic neurons also contributes to hypertension in selected models.
Collapse
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland (V.L.B.)
| |
Collapse
|
18
|
Pace M, Falappa M, Freschi A, Balzani E, Berteotti C, Lo Martire V, Kaveh F, Hovig E, Zoccoli G, Amici R, Cerri M, Urbanucci A, Tucci V. Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020; 5:137495. [PMID: 32365348 DOI: 10.1172/jci.insight.137495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems. We observed that the dynamics between neuronal discharge in the LH and the sleep-wake states of mice with paternal deletion of Snord116 (PWScrm+/p-) are compromised. This abnormal state-dependent neuronal activity is paralleled by a significant reduction in OX neurons in the LH of mutant mice. Therefore, we propose that an imbalance between OX- and MCH-expressing neurons in the LH of mutant mice reflects a series of deficits manifested in the PWS, such as dysregulation of rapid eye movement (REM) sleep, food intake, and temperature control.
Collapse
Affiliation(s)
- Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| | - Matteo Falappa
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy
| | - Andrea Freschi
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| | - Edoardo Balzani
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fatemeh Kaveh
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Valter Tucci
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| |
Collapse
|
19
|
Lo Martire V, Berteotti C, Bastianini S, Alvente S, Valli A, Cerri M, Amici R, Silvani A, Swoap SJ, Zoccoli G. The physiological signature of daily torpor is not orexin dependent. J Comp Physiol B 2020; 190:493-507. [DOI: 10.1007/s00360-020-01281-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
|
20
|
Picón-Jaimes YA, Orozco-Chinome JE, Molina-Franky J, Franky-Rojas MP. Control central de la temperatura corporal y sus alteraciones: fiebre, hipertermia e hipotermia. MEDUNAB 2020. [DOI: 10.29375/01237047.3714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introducción. En mamíferos, el control de la temperatura corporal es vital. El estado de consciencia y control motor en humanos, ocurren a una temperatura de 37°C y las desviaciones pueden alterar las propiedades celulares, generando disfunciones fisiológicas. En especies como los roedores (su relación área de superficie/volumen facilita la pérdida de calor) mantienen temperaturas basales cercanas a los 30°C. Distinto es con animales como los paquidermos, cuya temperatura es menor comparada con los humanos. El objetivo es identificar los aspectos fisiológicos de la termorregulación. Descripción de temas tratados. Revisión descriptiva de la literatura de artículos publicados en diferentes bases de datos. La termorregulación es la capacidad del cuerpo para establecer y mantener su temperatura, regulando producción y pérdida de calor para optimizar la eficiencia de procesos metabólicos. El protagonismo lo tiene el sistema nervioso central y su control neuro-hormonal en múltiples niveles. El centro regulador térmico está en el hipotálamo anterior. Este recibe información de los receptores de grandes vasos, vísceras abdominales, médula espinal y de la sangre que perfunde el hipotálamo. Cuando aumenta la temperatura central, el termorregulador activa fibras eferentes del sistema nervioso autónomo, provocando pérdida de calor por convección y evaporación. Ante el descenso de temperatura, la respuesta es disminuir la pérdida de calor (vasoconstricción y menor sudoración); además, incrementar la producción de calor, intensificando la actividad muscular. Conclusión. La termorregulación es liderada por el hipotálamo, quien regula aumento y disminución de la temperatura respondiendo a las necesidades del organismo para llegar a la homeostasis y compensación, enfrentando las alteraciones de la temperatura ambiental
Collapse
|
21
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Martin T, Dauvilliers Y, Koumar OC, Bouet V, Freret T, Besnard S, Dauphin F, Bessot N. Dual orexin receptor antagonist induces changes in core body temperature in rats after exercise. Sci Rep 2019; 9:18432. [PMID: 31804545 PMCID: PMC6895233 DOI: 10.1038/s41598-019-54826-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023] Open
Abstract
Hypothalamic orexin neurons are involved in various physiological functions, including thermoregulation. The orexinergic system has been considered as a potent mediator of the exercise response. The present study describes how the antagonization of the orexinergic system by a dual orexin receptor antagonist (DORA) modifies the thermoregulatory process during exercise. Core Body Temperature (CBT) and Spontaneous Locomotor Activity (SLA) of 12 male Wistar rats were recorded after either oral administration of DORA (30 mg/kg or 60 mg/kg) or placebo solution, both at rest and in exercise conditions with treadmill running. DORA ingestion decreased SLA for 8 hours (p < 0.001) and CBT for 4 hours (p < 0.01). CBT (°C) response was independent of SLA. The CBT level decreased from the beginning to the end of exercise when orexin receptors were antagonized, with a dose-dependent response (39.09 ± 0.36 and 38.88 ± 0.28 for 30 and 60 mg/kg; p < 0.001) compared to placebo (39.29 ± 0.31; p < 0.001). CBT increased during exercise was also blunted after DORA administration, but without dose effects of DORA. In conclusion, our results favor the role of orexin in the thermoregulation under stress related to exercise conditions.
Collapse
Affiliation(s)
- Tristan Martin
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | - Yves Dauvilliers
- Reference National Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, University of Montpellier, Montpellier, INSERM U1061, France
| | | | - Valentine Bouet
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | - Thomas Freret
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France
| | | | | | - Nicolas Bessot
- Normandie Univ, Unicaen, INSERM, COMETE, 14000, Caen, France.
| |
Collapse
|
23
|
Iwakawa S, Kanmura Y, Kuwaki T. Orexin Receptor Blockade-Induced Sleep Preserves the Ability to Wake in the Presence of Threat in Mice. Front Behav Neurosci 2019; 12:327. [PMID: 30687033 PMCID: PMC6338018 DOI: 10.3389/fnbeh.2018.00327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
Retention of the ability to wake from sleep in response to dangerous situations is an ideal characteristic of safe hypnotics. We studied the effects of a dual orexin receptor antagonist-22 (DORA-22) and the GABA-A receptor modulator, triazolam, on the ability to wake in response to aversive stimuli. We examined four modalities of sensory inputs, namely, auditory (ultrasonic sound), vestibular (trembling), olfactory (predator odor), and autonomic (hypoxia) stimuli. When the mice fell asleep, one of the four stimuli was applied for 30 s. In the case of auditory stimulation, latency to arousal following vehicle, DORA-22, and triazolam administration was 3.0 (2.0–3.8), 3.5 (2.0–6.5), and 161 (117–267) s (median and 25–75 percentile in the parentheses, n = 8), respectively. Latency to return to sleep after arousal was 148 (95–183), 70 (43–98), and 60 (52–69) s, respectively. Similar results were obtained for vestibular and olfactory stimulation. During the hypoxic stimulation, latencies for arousal and returning to sleep were not significantly different among the groups. The findings of this study are consistent with the distinct mechanisms of these sleep promoting therapies; GABA-A receptor activation by triazolam is thought to induce widespread central nervous system (CNS) suppression while DORA-22 more specifically targets sleep/wake pathways through orexin receptor antagonism. These data support the notion that DORA-22 preserves the ability to wake in response to aversive and consciousness-inducing sensory stimuli, regardless of modality, while remaining effective in the absence of threat. This study provides a unique and important safety evaluation of the potential for certain hypnotics.
Collapse
Affiliation(s)
- Shouhei Iwakawa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
24
|
Ikoma Y, Kusumoto-Yoshida I, Yamanaka A, Ootsuka Y, Kuwaki T. Inactivation of Serotonergic Neurons in the Rostral Medullary Raphé Attenuates Stress-Induced Tachypnea and Tachycardia in Mice. Front Physiol 2018; 9:832. [PMID: 30050449 PMCID: PMC6050454 DOI: 10.3389/fphys.2018.00832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
The medullary raphé nuclei are involved in controlling cardiovascular, respiratory, and thermoregulatory functions, as well as mediating stress-induced tachycardia and hyperthermia. Although the serotonergic system of the medullary raphé has been suggested as the responsible entity, specific evidence has been insufficient. In the present study, we tested this possibility by utilizing an optogenetic approach. We used genetically modified mice [tryptophan hydroxylase 2 (Tph2); archaerhodopsin-T (ArchT) mice] in which ArchT, a green light-driven neuronal silencer, was selectively expressed in serotonergic neurons under the regulation of Tph2 promoters. We first confirmed that an intruder stress selectively activated medullary, but not dorsal or median raphé serotonergic neurons. This activation was suppressed by photo-illumination via a pre-implanted optical fiber, as evidenced by the decrease of a cellular activation marker protein in the neurons. Next, we measured electro cardiogram (ECG), respiration, body temperature (BT), and locomotor activity in freely moving mice during intruder and cage-drop stress tests, with and without photo-illumination. In the intruder test, photo inactivation of the medullary serotonergic neurons significantly attenuated tachycardia (362 ± 58 vs. 564 ± 65 bpm.min, n = 19, p = 0.002) and tachypnea (94 ± 82 vs. 361 ± 138 cpm.min, n = 9, p = 0.026), but not hyperthermia (1.0 ± 0.1 vs. 1.0 ± 0.1°C.min, n = 19, p = 0.926) or hyperlocomotion (17 ± 4 vs. 22 ± 4, arbitrary, n = 19, p = 0.089). Similar results were obtained from cage-drop stress testing. Finally, photo-illumination did not affect the basal parameters of the resting condition. We conclude that a subpopulation of serotonergic neurons in the medullary raphé specifically mediate stress-induced tachypnea and tachycardia, which have little involvement in the basal determination of respiratory frequency (Res) and heart rate (HR), specifically mediate stress-induced tachycardia and tachypnea.
Collapse
Affiliation(s)
- Yoko Ikoma
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Youichirou Ootsuka
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Centre for Neuroscience, Discipline of Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
25
|
Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1663-1680. [PMID: 29508004 PMCID: PMC5949267 DOI: 10.1007/s00213-018-4871-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 528 Tobin Hall, 135 Hicks Way, Amherst, MA, 01003, USA.
| |
Collapse
|
26
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
28
|
The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2017; 28:545-555. [DOI: 10.1007/s10286-017-0473-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
|
29
|
Silvani A. Orexins and the cardiovascular events of awakening. Temperature (Austin) 2017; 4:128-140. [PMID: 28680929 DOI: 10.1080/23328940.2017.1295128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022] Open
Abstract
This brief review aims to provide an updated account of the cardiovascular events of awakening, proposing a testable conceptual framework that links these events with the neural control of sleep and the autonomic nervous system, with focus on the hypothalamic orexin (hypocretin) neurons. Awakening from non-rapid-eye-movement sleep entails coordinated changes in brain and cardiovascular activity: the neural "flip-flop" switch that governs state transitions becomes biased toward the ascending arousal systems, arterial blood pressure and heart rate rise toward waking values, and distal skin temperature falls. Arterial blood pressure and skin temperature are sensed by baroreceptors and thermoreceptors and may positively feedback on the brain wake-sleep switch, thus contributing to sharpen, coordinate, and stabilize awakening. These effects may be enhanced by the hypothalamic orexin neurons, which may modulate the changes in blood pressure, heart rate, and skin temperature upon awakening, while biasing the wake-sleep switch toward wakefulness through direct neural projections. A deeper understanding of the cardiovascular events of awakening and of their links with skin temperature and the wake-sleep neural switch may lead to better treatments options for patients with narcolepsy type 1, who lack the orexin neurons.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. Curr Top Behav Neurosci 2017; 33:157-196. [PMID: 27909989 DOI: 10.1007/7854_2016_46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orexin makes an important contribution to the regulation of cardiorespiratory function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate, sympathetic nerve activity, and the amplitude and frequency of respiration. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals at all levels of the central autonomic and respiratory network. These cardiorespiratory responses are components of arousal and are necessary to allow the expression of motivated behaviors. Thus, orexin contributes to the cardiorespiratory response to acute stressors, especially those of a psychogenic nature. Consequently, upregulation of orexin signaling, whether it is spontaneous or environmentally induced, can increase blood pressure and lead to hypertension, as is the case for the spontaneously hypertensive rat and the hypertensive BPH/2J Schlager mouse. Blockade of orexin receptors will reduce blood pressure in these animals, which could be a new pharmacological approach for the treatment of some forms of hypertension. Orexin can also magnify the respiratory reflex to hypercapnia in order to maintain respiratory homeostasis, and this may be in part why it is upregulated during obstructive sleep apnea. In this pathological condition, blockade of orexin receptors would make the apnea worse. To summarize, orexin is an important modulator of cardiorespiratory function. Acting on orexin signaling may help in the treatment of some cardiovascular and respiratory disorders.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
31
|
Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016; 334:119-133. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
Our series of rat experiments have shown that locomotor activity, arousal level, body and brown adipose tissue temperatures, heart rate and arterial pressure increase episodically in an integrated manner approximately every 100min (ultradian manner). Although it has been proposed that the integrated ultradian pattern is a fundamental biological rhythm across species, there are no reports of the integrated ultradian pattern in species other than rats. The aim of the present study was to establish a mouse model using simultaneous recording of locomotor activity, eating behavior, body temperature, heart rate and arousal in order to determine whether their behavior and physiology are organized in an ultradian manner in normal (wild-type) mice. We also incorporated the same recording in prepro-orexin knockout (ORX-KO) mice to reveal the role of orexin in the brain mechanisms underlying ultradian patterning. The orexin system is one of the key conductors required for coordinating autonomic functions and behaviors, and thus may contribute to ultradian patterning. In wild-type mice, locomotor activity, arousal level, body temperature and heart rate increased episodically every 93±18min (n=8) during 24h. Eating was integrated into the ultradian pattern, commencing 23±4min (n=8) after the onset of an electroencephalogram (EEG) ultradian episode. The integrated ultradian pattern in wild-type mice is very similar to that observed in rats. In ORX-KO mice, the ultradian episodic changes in locomotor activity, EEG arousal indices and body temperature were significantly attenuated, but the ultradian patterning was preserved. Our findings support the view that the ultradian pattern is common across species. The present results also suggest that orexin contributes to driving ultradian episodic changes, however, this neuropeptide is not essential for the generation of the ultradian pattern.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Youichirou Ootsuka
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Centre for Neuroscience, Department of Human Physiology, School of Medicine, Flinders University, South Australia, Australia.
| |
Collapse
|
32
|
Shido O. Introduction to the special issue of the journal Temperature on Japanese thermal physiology. Temperature (Austin) 2015; 2:308-9. [PMID: 27227032 PMCID: PMC4843956 DOI: 10.1080/23328940.2015.1078927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 12/03/2022] Open
Abstract
This editorial introduces the special issue of the journal Temperature on thermal physiology in Japan and acknowledges significant contributions of Japanese scientists to the development of thermal biology and physiology. This special issue contains articles on the history of Japanese thermal physiology and physiologists, invited reviews, research papers, and other contributions. It shows clearly that thermophysiology is a vibrant discipline in today's Japan.
Collapse
Affiliation(s)
- Osamu Shido
- Department of Environmental Physiology; Faculty of Medicine; Shimane University; Shimane, Japan
| |
Collapse
|