1
|
Dhori X, Gioiosa S, Gonfloni S. An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. Sci Data 2024; 11:972. [PMID: 39242561 PMCID: PMC11379948 DOI: 10.1038/s41597-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Collapse
Affiliation(s)
- Xhulio Dhori
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy
| | - Silvia Gioiosa
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy.
| | - Stefania Gonfloni
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy.
| |
Collapse
|
2
|
Mancini F, Giorgini L, Teveroni E, Pontecorvi A, Moretti F. Role of Sex in the Therapeutic Targeting of p53 Circuitry. Front Oncol 2021; 11:698946. [PMID: 34307167 PMCID: PMC8298065 DOI: 10.3389/fonc.2021.698946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Sex profoundly affects cancer incidence and susceptibility to therapy, with sex hormones highly contributing to this disparity. Various studies and omics data suggest a relationship between sex and the oncosuppressor p53 circuitry, including its regulators MDM2 and MDM4. Association of this network with genetic variation underlies sex-related altered cancer risk, age of onset, and cancer sensitivity to therapy. Moreover, sex-related factors, mainly estrogenic hormones, can affect the levels and/or function of the p53 network both in hormone-dependent and independent cancer. Despite this evidence, preclinical and clinical studies aimed to evaluate p53 targeted therapy rarely consider sex and related factors. This review summarizes the studies reporting the relationship between sex and the p53 circuitry, including its associated regulators, MDM2 and MDM4, with particular emphasis on estrogenic hormones. Moreover, we reviewed the evaluation of sex/hormone in preclinical studies and clinical trials employing p53-target therapies, and discuss how patients’ sex and hormonal status could impact these therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Mancini
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Ludovica Giorgini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy.,Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Emanuela Teveroni
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy
| |
Collapse
|
3
|
Fan Y, Wang K. miR‑205 suppresses cell migration, invasion and EMT of colon cancer by targeting mouse double minute 4. Mol Med Rep 2020; 22:633-642. [PMID: 32467998 PMCID: PMC7339668 DOI: 10.3892/mmr.2020.11150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the most frequent malignant tumors, and microRNA (miR)‑205 is involved in the tumor progression. The present study aimed to explore the effects of miR‑205 on human colon cancer and its targeting mechanism. The levels of miR‑205 and mouse double minute 4 (MDM4) were determined via reverse transcription‑quantitative (RT‑q)PCR and western blot analysis. A luciferase activity assay was performed to analyze the association between miR‑205 and MDM4. Cell viability, migration and invasion were determined via Cell Counting Kit‑8, wound healing and Transwell assays, respectively. The levels of epithelial‑mesenchymal transition (EMT)‑associated factors were determined by RT‑qPCR and western blot analysis. It was identified that MDM4 was overexpressed in colon cancer tissues and cells, and that there was a negative correlation between miR‑205 and MDM4 expression in colon cancer. Similarly, miR‑205 inhibited MDM4 expression by binding to its 3'untranslated region. in addition, miR‑205 directly targeted MDM4, accompanied by suppressed proliferation, migration and invasion of HCT116 cells. EMT processes were suppressed in miR‑205‑overexpressed cells; upregulation of E‑cadherin, and downregulation of N‑cadherin, vimentin, matrix metalloproteinase (MMP)2 and MMP9 were observed. Collectively, miR‑205 conspicuously depressed the viability, migration, invasion and EMT process of human colon cancer cells via targeting MDM4. miR‑205 could be potentially used in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100036, P.R. China
| | - Kuanyu Wang
- Department of The Second Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
4
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Liu L, Yang L, Chang H, Chen YN, Zhang F, Feng S, Peng J, Ren CC, Zhang XA. CP‑31398 attenuates endometrial cancer cell invasion, metastasis and resistance to apoptosis by downregulating MDM2 expression. Int J Oncol 2019; 54:942-954. [PMID: 30628640 PMCID: PMC6365028 DOI: 10.3892/ijo.2019.4681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies of the female reproductive system, and metastasis is a major cause of mortality. In this study, we aimed to explore the role of CP-31398 in the migration, invasion and apoptosis of EC cells by its regulation of the expression of the murine double minute 2 (MDM2) gene. For this purpose, EC tissues and adjacent normal tissues were collected, and the positive expression rate of MDM2 in these tissues was assessed. Subsequently, the cellular 50% inhibitory concentration (IC50) of CP-31398 was measured. The EC RL95-2 and KLE cell lines had a higher MDM2 expression and were thus selected for use in subsequent experiments. The EC cells were then treated with CP-31398 (2 µg/ml), and were transfected with siRNA against MDM2 or an MDM2 overexpression plasmid in order to examine the effects of CP-31398 and MDM2 on EC cell activities. The expression of p53, p21, Bad, Bax, B-cell lymphoma-2 (Bcl-2), cytochrome c (Cyt-c), caspase-3, Cox-2, matrix metalloproteinase (MMP)-2 and MMP-9 was measured to further confirm the effects of CP-31398 on cell migration, invasion and apoptosis. Our results indicated that MDM2 was highly expressed in EC tissues. Notably, EC cell viability decreased with the increasing concentrations of CP-31398. The EC cells treated with CP-31398 or siRNA against MDM2 exhibited an increased apoptosis and a suppressed migration and invasion, corresponding to an increased expression of p53, p21, Bad, Bax, Cyt-c and caspase-3, as well as to a decreased expression of Bcl-2, Cox-2, MMP-2 and MMP-9. Moreover, treatment with CP-31398 and siRNA against MDM2 further enhanced these effects. Taken together, the findings of this study indicate that the CP-31398-mediated downregulation of MDM2 may suppress EC progression via its inhibitory role in EC cell migration, invasion and resistance to apoptosis. Therefore, treatment with CP-31398 may prove to be possible therapeutic strategy for EC.
Collapse
Affiliation(s)
- Ling Liu
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Yang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Chang
- Laboratory of Tumor Precision Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan-Nan Chen
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Zhang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuo Feng
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Peng
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
6
|
Zhu X, Wang K, Yao Y, Zhang K, Zhou F, Zhu L. Triggering p53 activation is essential in ziyuglycoside I-induced human retinoblastoma WERI-Rb-1 cell apoptosis. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 Jiangsu Province People's Republic of China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 Jiangsu Province People's Republic of China
| | - Yong Yao
- Department of Ophthalmology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi 214023 Jiangsu Province People's Republic of China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 Jiangsu Province People's Republic of China
| | - Fanfan Zhou
- Faculty of Pharmacy; University of Sydney; Sydney NSW 2006 Australia
| | - Ling Zhu
- Save Sight Institute; University of Sydney; Sydney NSW 2000 Australia
| |
Collapse
|
7
|
Ye C, Tang H, Zhao Z, Lei CT, You CQ, Zhang J, Gao P, He FF, Chen S, Wang YM, Zhang C, Su H. MDM2 mediates fibroblast activation and renal tubulointerstitial fibrosis via a p53-independent pathway. Am J Physiol Renal Physiol 2017; 312:F760-F768. [PMID: 28100501 DOI: 10.1152/ajprenal.00528.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 01/07/2023] Open
Abstract
It is well recognized that murine double minute gene 2 (MDM2) plays a critical role in cell proliferation and inflammatory processes during tumorigenesis. It is also reported that MDM2 is expressed in glomeruli and involved in podocyte injury. However, whether MDM2 is implicated in renal fibrosis remains unclear. Here we investigated the role of MDM2 in tubulointerstitial fibrosis (TIF). By immunohistochemical staining and Western blotting we confirmed that MDM2 is upregulated in the tubulointerstitial compartment in patients with TIF and unilateral urethral obstruction (UUO) mice, which mainly originates from myofibroblasts. Consistently, in vitro MDM2 is increased in TGF-β1-treated fibroblasts, one of the major sources of collagen-producing myofibroblasts during TIF, along with fibroblast activation. Importantly, genetic deletion of MDM2 significantly attenuates fibroblast activation. We then analyzed the possible downstream signaling of MDM2 during fibroblast activation. p53-dependent pathway is the classic downstream signaling of MDM2, and Nutlin-3 is a small molecular inhibitor of MDM2-p53 interaction. To our surprise, Nutlin-3 could not ameliorate fibroblast activation in vitro and TIF in UUO mice. However, we found that Notch1 signaling is attenuated during fibroblast activation, which could be markedly rescued by MDM2 knockdown. Overexpression of intracellular domain of Notch1 (NICD) by plasmid could obviously minimize fibroblast activation induced by TGF-β1. In addition, the degradation of NICD is strikingly suppressed by PYR-41, an inhibitor of ubiquitin-activating enzyme E1, and proteasome inhibitor MG132. Taken together, our findings provide the first evidence that MDM2 is involved in fibroblast activation and TIF, which associates with Notch1 ubiquitination and proteasome degradation.
Collapse
Affiliation(s)
- Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Qun You
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Roles of pRB in the Regulation of Nucleosome and Chromatin Structures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5959721. [PMID: 28101510 PMCID: PMC5215604 DOI: 10.1155/2016/5959721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.
Collapse
|
9
|
Hernández-Monge J, Rousset-Roman AB, Medina-Medina I, Olivares-Illana V. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB. Genes Cancer 2016; 7:278-287. [PMID: 28050229 PMCID: PMC5115168 DOI: 10.18632/genesandcancer.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB.
Collapse
Affiliation(s)
- Jesús Hernández-Monge
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Adriana Berenice Rousset-Roman
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Ixaura Medina-Medina
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Vanesa Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| |
Collapse
|